
Excursion in elementary number theory

Notes for Math 370
Ching-Li Chai

§1. Some facts about Z/nZ
(1.1) Let n ≥ 2 be a positive integer, and let

n = pe11 · · · peaa

be the primary factorization of n, where p1, . . . , pr are distinct prime numbers, and e1, . . . , er ≥
1 are positive integers. The Chinese Remainder Theorem asserts that the canonical map

Z/nZ → (Z/pe11 )× · · · × (Z/perr )

is an isomorphism. Therefore we get a canonical isomorphism

(Z/nZ)× ∼−→ (Z/pe11 )× × · · · × (Z/perr )×

on the group of units.

(1.2) By definition, the Euler’s function ϕ has value ϕ(n) := Card((Z/nZ)×) for every
positive integer n. The Chinese remainder theorem tells us that ϕ is a multiplicative function:
if (m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n). Consequently if n = pe11 · · · peaa is the primary
factorization of n, then

ϕ(n) = (p1 − 1) · · · (pa − 1) pe1−1
1 · · · pea−1

a .

(1.3) Lemma (Fermat’s little theorem) Let p be a prime number. Then ap ≡ a (mod p)
for every integer a. Equivalently, ap−1 ≡ 1 (mod p) for every integer a with (a, p) = 1.

Proof. The group of units F×
p in Fp is a group with p− 1 elements.

Fermat’s little theorem, although fairly easy from the point of view of group theory, is
useful in elementary primality test: Given a natural number n, select a a relatively small
number of natural numbers ai such that ai < n for each i, and test whether an−1

i ≡ 1
(mod n). If an−1

i ̸≡ 1 (mod n) for some i, then n is not a prime number. On the other hand,
if ap−1

i ≡ 1 (mod n) for each i, then one knows the chance for n to be a prime number is
quite good. Since computing an−1

i modulo n can be done quickly, this method provides a
fast albeit unsophisticated probabilistic test for primality.
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(1.4) For any prime number p > 0, the group (Z/pZ)× is a cyclic group of order p − 1.
Actually this statement holds for all finite fields: The group of units for any finite field F×

q

is cyclic. The standard proof uses the fact that over any field k, every polynomial of degree
d > 0 with coefficients in k has at most d distinct roots in k. Most “elementary” proofs uses
this method in some disguise.

Let p be a prime number, e ≥ 1. Consider the group (Z/pe)× and its subgroup (Z/pe)×1
of principal units, consisting of all elements of x ∈ (Z/pe)× with x ≡ 1 (mod p).

(1.5) Proposition (i) Let p be an odd prime number. Then (Z/pe)×1 is a cyclic group of
order pe−1, generated by the element represented by 1 + p.

(ii) For an odd prime number p, the group (Z/pe)× is cyclic of order (p− 1)pe−1.

(iii) For the case p = 2, assume that e ≥ 2. Then the subgroup (Z/2e)×2 of (Z/2e)× consisting
of all elements x ∈ (Z/2e)× with x ≡ 1 (mod 4) is cyclic order 2e−2. The element 5̄ is
a generator of (Z/2e)×2 . The group (Z/2e)×1 = (Z/2e)× is the direct product of (Z/2e)×2
with {±1̄}.

When p is odd, the elements of (Z/pe)× whose order divides p − 1 is the product of all
Sylow-ℓ-subgroups of (Z/pe)×, where ℓ runs over all primes divisors of p − 1. It is a cyclic
group of order p− 1 by Proposition 1.4.

§2. Sum of squares
(2.1) The equation x2 + y2 = z2 is familiar from Pythagoras’s theorem. The identity
(a2 − b2)2 + (2ab)2 = (a2 + b2)2 produces lots of integer solutions of the above equation, and
all non-trivial integer solutions can be obtained this way.

(2.2) One question that traces back to the ancient time is: Which whole numbers are sum
of two squares? In other words, given a positive number n, we would like to know whether
there exist integers x, y such that n = x2 + y2.

(2.3) Proposition (i) Let p be an odd prime number. Then p is a sum of two squares if
and only if p ≡ 1 (mod 4).

(ii) Let n be a positive integer and let n = pe11 · · · peaa be its primary factorization. Then n
is a sum of two squares if and only if ei ≡ 0 (mod 2) for each i with pi ≡ 3 (mod 4).
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§3. The Legendre symbol
(3.1) Definition Let p be an odd prime number. For every a ∈ Z, define(

a

p

)
=


1 if ā ∈ (F×

p )
2

−1 if ā ∈ (F×
p ∖ F×

p )
2

0 if a ≡ 0 (mod p)


The function

(
·
p

)
is called the Legendre symbol for the prime number p.

(3.2) Lemma Let p be an odd prime number.

(i) If a ∈ Z and (a, p) = 1, then
(

a
p

)
= 1 if and only if

a
p−1
2 ≡ 1 (mod p) .

(ii) If a, b ∈ Z and (ab, p) = 1, then (
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof. The group Fp
× is a cyclic group of order p− 1.

The values of
(

−1
p

)
and

(
2
p

)
are given below.

(3.3) Corollary Let p be an odd prime number. Then(
−1

p

)
= (−1)

p−1
2 .

In other words,
(

−1
p

)
= 1 if and only if p ≡ 1 (mod 4).

(3.4) Proposition Let p be an odd prime number. Then(
2

p

)
= (−1)

p2−1
8 .

In other words,
(

2
p

)
= 1 if and only if p ≡ ±1 (mod 8).

Gauss’s famous quadratic reciprocity theorem gives an effective way to compute the Leg-
endre symbol. He gave four different proof of it.

(3.5) Theorem (Quadratic reciprocity) Let ℓ and p be two distinct odd prime numbers.
Then (

ℓ

p

)
=

(p
ℓ

)
(−1)

(ℓ−1)(p−1)
4 .
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(3.6) Example Both 257 and 101 are prime numbers. We have(
101

257

)
=

(
55

101

)
=

(
5

101

) (
11

101

)
=

(
1

5

) (
2

11

)
= −1 .

(3.7) Remark Most books on elementary number theory covers the above material, and
more. A succinct eight-page treatment can be found in the book “A Course in Arithmetic”
by J.-P. Serre.
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