EXCURSION IN ELEMENTARY NUMBER THEORY

Notes for Math 370 Ching-Li Chai

§1. Some facts about $\mathbb{Z}/n\mathbb{Z}$

(1.1) Let $n \geq 2$ be a positive integer, and let

$$n = p_1^{e_1} \cdots p_a^{e_a}$$

be the primary factorization of n, where p_1, \ldots, p_r are distinct prime numbers, and $e_1, \ldots, e_r \ge 1$ are positive integers. The *Chinese Remainder Theorem* asserts that the canonical map

$$\mathbb{Z}/n\mathbb{Z} \to (\mathbb{Z}/p_1^{e_1}) \times \cdots \times (\mathbb{Z}/p_r^{e_r})$$

is an isomorphism. Therefore we get a canonical isomorphism

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \xrightarrow{\sim} (\mathbb{Z}/p_1^{e_1})^{\times} \times \cdots \times (\mathbb{Z}/p_r^{e_r})^{\times}$$

on the group of units.

(1.2) By definition, the Euler's function ϕ has value $\phi(n) := \operatorname{Card}((\mathbb{Z}/n\mathbb{Z})^{\times})$ for every positive integer n. The Chinese remainder theorem tells us that ϕ is a multiplicative function: if (m,n)=1, then $\phi(mn)=\phi(m)\phi(n)$. Consequently if $n=p_1^{e_1}\cdots p_a^{e_a}$ is the primary factorization of n, then

$$\phi(n) = (p_1 - 1) \cdots (p_a - 1) p_1^{e_1 - 1} \cdots p_a^{e_a - 1}.$$

(1.3) Lemma (Fermat's little theorem) Let p be a prime number. Then $a^p \equiv a \pmod{p}$ for every integer a. Equivalently, $a^{p-1} \equiv 1 \pmod{p}$ for every integer a with (a, p) = 1.

PROOF. The group of units \mathbb{F}_p^{\times} in \mathbb{F}_p is a group with p-1 elements.

Fermat's little theorem, although fairly easy from the point of view of group theory, is useful in elementary primality test: Given a natural number n, select a a relatively small number of natural numbers a_i such that $a_i < n$ for each i, and test whether $a_i^{n-1} \equiv 1 \pmod{n}$. If $a_i^{n-1} \not\equiv 1 \pmod{n}$ for some i, then n is not a prime number. On the other hand, if $a_i^{p-1} \equiv 1 \pmod{n}$ for each i, then one knows the chance for n to be a prime number is quite good. Since computing a_i^{n-1} modulo n can be done quickly, this method provides a fast albeit unsophisticated probabilistic test for primality.

(1.4) For any prime number p > 0, the group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cyclic group of order p - 1. Actually this statement holds for all finite fields: The group of units for any finite field \mathbb{F}_q^{\times} is cyclic. The standard proof uses the fact that over any field k, every polynomial of degree d > 0 with coefficients in k has at most d distinct roots in k. Most "elementary" proofs uses this method in some disguise.

Let p be a prime number, $e \ge 1$. Consider the group $(\mathbb{Z}/p^e)^{\times}$ and its subgroup $(\mathbb{Z}/p^e)_1^{\times}$ of principal units, consisting of all elements of $x \in (\mathbb{Z}/p^e)^{\times}$ with $x \equiv 1 \pmod{p}$.

- (1.5) Proposition (i) Let p be an odd prime number. Then $(\mathbb{Z}/p^e)_1^{\times}$ is a cyclic group of order p^{e-1} , generated by the element represented by 1+p.
 - (ii) For an odd prime number p, the group $(\mathbb{Z}/p^e)^{\times}$ is cyclic of order $(p-1)p^{e-1}$.
- (iii) For the case p=2, assume that $e \geq 2$. Then the subgroup $(\mathbb{Z}/2^e)_2^{\times}$ of $(\mathbb{Z}/2^e)^{\times}$ consisting of all elements $x \in (\mathbb{Z}/2^e)^{\times}$ with $x \equiv 1 \pmod 4$ is cyclic order 2^{e-2} . The element $\bar{5}$ is a generator of $(\mathbb{Z}/2^e)_2^{\times}$. The group $(\mathbb{Z}/2^e)_1^{\times} = (\mathbb{Z}/2^e)^{\times}$ is the direct product of $(\mathbb{Z}/2^e)_2^{\times}$ with $\{\pm \bar{1}\}$.

When p is odd, the elements of $(\mathbb{Z}/p^e)^{\times}$ whose order divides p-1 is the product of all Sylow- ℓ -subgroups of $(\mathbb{Z}/p^e)^{\times}$, where ℓ runs over all primes divisors of p-1. It is a cyclic group of order p-1 by Proposition 1.4.

§2. Sum of squares

- (2.1) The equation $x^2 + y^2 = z^2$ is familiar from Pythagoras's theorem. The identity $(a^2 b^2)^2 + (2ab)^2 = (a^2 + b^2)^2$ produces lots of integer solutions of the above equation, and all non-trivial integer solutions can be obtained this way.
- (2.2) One question that traces back to the ancient time is: Which whole numbers are sum of two squares? In other words, given a positive number n, we would like to know whether there exist integers x, y such that $n = x^2 + y^2$.
- (2.3) Proposition (i) Let p be an odd prime number. Then p is a sum of two squares if and only if $p \equiv 1 \pmod{4}$.
 - (ii) Let n be a positive integer and let $n = p_1^{e_1} \cdots p_a^{e_a}$ be its primary factorization. Then n is a sum of two squares if and only if $e_i \equiv 0 \pmod{2}$ for each i with $p_i \equiv 3 \pmod{4}$.

§3. The Legendre symbol

(3.1) **Definition** Let p be an odd prime number. For every $a \in \mathbb{Z}$, define

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } \bar{a} \in (\mathbb{F}_p^{\times})^2 \\ -1 & \text{if } \bar{a} \in (\mathbb{F}_p^{\times} \setminus \mathbb{F}_p^{\times})^2 \\ 0 & \text{if } a \equiv 0 \pmod{p} \end{cases}$$

The function $\left(\frac{\cdot}{p}\right)$ is called the *Legendre symbol* for the prime number p.

- (3.2) Lemma Let p be an odd prime number.
 - (i) If $a \in \mathbb{Z}$ and (a, p) = 1, then $\left(\frac{a}{p}\right) = 1$ if and only if $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$
 - (ii) If $a, b \in \mathbb{Z}$ and (ab, p) = 1, then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) .$$

PROOF. The group \mathbb{F}_p^{\times} is a cyclic group of order p-1. \blacksquare The values of $\left(\frac{-1}{p}\right)$ and $\left(\frac{2}{p}\right)$ are given below.

(3.3) Corollary Let p be an odd prime number. Then

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}.$$

In other words, $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{4}$.

(3.4) Proposition Let p be an odd prime number. Then

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.$$

In other words, $\left(\frac{2}{p}\right) = 1$ if and only if $p \equiv \pm 1 \pmod{8}$.

Gauss's famous *quadratic reciprocity* theorem gives an effective way to compute the Legendre symbol. He gave four different proof of it.

(3.5) **Theorem** (Quadratic reciprocity) Let ℓ and p be two distinct odd prime numbers. Then

$$\left(\frac{\ell}{p}\right) = \left(\frac{p}{\ell}\right) \left(-1\right)^{\frac{(\ell-1)(p-1)}{4}}.$$

(3.6) Example Both 257 and 101 are prime numbers. We have

$$\left(\frac{101}{257}\right) = \left(\frac{55}{101}\right) = \left(\frac{5}{101}\right) \, \left(\frac{11}{101}\right) = \left(\frac{1}{5}\right) \, \left(\frac{2}{11}\right) = -1 \, .$$

(3.7) Remark Most books on elementary number theory covers the above material, and more. A succinct eight-page treatment can be found in the book "A Course in Arithmetic" by J.-P. Serre.