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§1. Some facts about Z/nZ

(1.1) Let n > 2 be a positive integer, and let

be the primary factorization of n, where py, ..., p, are distinct prime numbers, and ey, ..., e, >
1 are positive integers. The Chinese Remainder Theorem asserts that the canonical map

Z/nZ — (Z[py') x - -+ x (Z/py")
is an isomorphism. Therefore we get a canonical isomorphism
(Z/nZ)* = (Z/p{)* x -+ x (Z/p;r)*

on the group of units.

(1.2) By definition, the Euler’s function ¢ has value ¢(n) := Card((Z/nZ)*) for every
positive integer n. The Chinese remainder theorem tells us that ¢ is a multiplicative function:
if (m,n) = 1, then ¢(mn) = ¢(m) ¢(n). Consequently if n = pi*---pS* is the primary
factorization of n, then

d(n)=@p1—1) - (pa — 1)p§1—1 .. .pza—l ‘

(1.3) Lemma (Fermat’s little theorem) Let p be a prime number. Then a? = a (mod p)
for every integer a. Equivalently, a?~* =1 (mod p) for every integer a with (a,p) = 1.

PROOF. The group of units ) in F, is a group with p — 1 elements. &

Fermat’s little theorem, although fairly easy from the point of view of group theory, is
useful in elementary primality test: Given a natural number n, select a a relatively small
number of natural numbers a; such that a; < n for each i, and test whether a?‘l =
(mod n). If a?' # 1 (mod n) for some 4, then n is not a prime number. On the other hand,
if @””' = 1 (mod n) for each i, then one knows the chance for n to be a prime number is
quite good. Since computing a ' modulo n can be done quickly, this method provides a
fast albeit unsophisticated probabilistic test for primality.



(1.4) For any prime number p > 0, the group (Z/pZ)* is a cyclic group of order p — 1.
Actually this statement holds for all finite fields: The group of units for any finite field F
is cyclic. The standard proof uses the fact that over any field k, every polynomial of degree
d > 0 with coefficients in k£ has at most d distinct roots in k. Most “elementary” proofs uses
this method in some disguise.

Let p be a prime number, e > 1. Consider the group (Z/p¢)* and its subgroup (Z/p®);
of principal units, consisting of all elements of z € (Z/p°)* with z =1 (mod p).

(1.5) Proposition (i) Let p be an odd prime number. Then (Z/p®)y is a cyclic group of
order p°~t, generated by the element represented by 1 + p.

(11) For an odd prime number p, the group (Z/p®)* is cyclic of order (p — 1)p* .

(1ii) For the case p = 2, assume that e > 2. Then the subgroup (Z./2°)5 of (Z./2°)* consisting
of all elements x € (Z/2°)* with x = 1 (mod 4) is cyclic order 2°72. The element 5 is
a generator of (Z/2°)5. The group (7/2°)) = (Z/2°)* is the direct product of (Z./2¢)5
with {+1}.

When p is odd, the elements of (Z/p®)* whose order divides p — 1 is the product of all
Sylow-¢-subgroups of (Z/p®)*, where ¢ runs over all primes divisors of p — 1. It is a cyclic
group of order p — 1 by Proposition 1.4.

§2. Sum of squares

(2.1) The equation z? + y?> = 2% is familiar from Pythagoras’s theorem. The identity
(a* —b?)% + (2ab)? = (a* + b*)? produces lots of integer solutions of the above equation, and
all non-trivial integer solutions can be obtained this way.

(2.2) One question that traces back to the ancient time is: Which whole numbers are sum
of two squares? In other words, given a positive number n, we would like to know whether
there exist integers x,y such that n = 2% 4 y2.

(2.3) Proposition (i) Let p be an odd prime number. Then p is a sum of two squares if
and only if p=1 (mod 4).

(ii) Let n be a positive integer and let n = pi* ---pSe be its primary factorization. Then n
is a sum of two squares if and only if e; =0 (mod 2) for each i with p; =3 (mod 4).



§3. The Legendre symbol
(3.1) Definition Let p be an odd prime number. For every a € Z, define
1 if a € (FX)?

<9> = -1 ifae (FXNF)?
p 0 if a=0 (mod p)

iS]

The function <5) is called the Legendre symbol for the prime number p.
(3.2) Lemma Let p be an odd prime number.
(i) If a € Z and (a,p) = 1, then (%) =1 if and only if

az =1 (mod p).

(5)-G)G)

p p)\p)

PROOF. The group F,* is a cyclic group of order p — 1. &
The values of (_71) and (%) are given below.

(ii) If a,b € Z and (ab,p) = 1, then

(3.3) Corollary Let p be an odd prime number. Then

_1 p—1
) = (=15 .
() -
In other words, (%) =1 if and only if p=1 (mod 4).

(3.4) Proposition Let p be an odd prime number. Then

(@)=

In other words, (%) =1 if and only if p= £1 (mod 8).

Gauss’s famous quadratic reciprocity theorem gives an effective way to compute the Leg-
endre symbol. He gave four different proof of it.

(3.5) Theorem (Quadratic reciprocity) Let ¢ and p be two distinct odd prime numbers.

Then
(f;) _ (g) (_1)@,1)4(,,,1) '
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(3.6) Example Both 257 and 101 are prime numbers. We have

101 (5 Y\ (5 1y /1 2_1

257) \101) \101) \101) \5) \11)
(3.7) Remark Most books on elementary number theory covers the above material, and
more. A succinct eight-page treatment can be found in the book “A Course in Arithmetic”

by J.-P. Serre.



