Class functions

§1. Action of the center of the group ring

- (1.1) Notation Let G be a finite group and let k be an algebraically closed field of characteristic 0.
- (1.1.1) Let $C_1 = \{1\}, C_2, \dots, C_r$ be the conjugacy classes of G. Let $c_i := \#(C_i)$ for $i = 1, \dots, r$. Pick elements $z_i \in C_i$ for $1 \le i \le r$. Let $\sigma_i := \sum_{y \in C_i} [y] \in k[G], i = 1, \dots, r$.
- (1.1.2) Let $(V_{\alpha}, \rho_{\alpha})$, $\alpha = 1, ..., s$ be the non-isomorphic irreducible k-linear representation of G. Let χ_{α} be the character of ρ_{α} .
- (1.2) From Schur's lemma we get the orthogonality relations

$$\langle \chi_{\alpha}, \chi_{\beta} \rangle := \frac{1}{|G|} \sum_{y \in G} \chi_{\alpha}(y) \cdot \chi_{\beta}(y^{-1}) = \delta_{\alpha,\beta} \quad \forall \alpha, \beta.$$

In particular the irreducible characters χ_{α} generate an s-dimensional subspace of Z(k[G]), so $s \leq r$.

(1.3) LEMMA (1) Suppose that $u = \sum_{y \in G} a_y \cdot [y]$ is an element of the center Z(k[G]) of the group ring k[G] and let $f : G \to k$ be the corresponding class function with $f(y) = a_y$ for all $y \in G$. Then u operates on any irreducible representation (V_β, ρ_β) by

$$\frac{\sum_{y \in G} a_y \cdot \chi_{\beta}(y)}{\chi_{\beta}(1)} \cdot \operatorname{Id}_{V_{\beta}} = \frac{|G|}{\chi_{\beta}(1)} \cdot \langle f, \chi_{\beta^{\vee}} \rangle \cdot \operatorname{Id}_{V_{\beta}},$$

where $\chi_{\beta^{\vee}}$ is the character of the contragradient representation of ρ_{β} , i.e. $\chi_{\beta^{\vee}}(x) = \chi_{\beta}(x^{-1})$ for all $x \in G$.

(2) The element $\sigma_i = \sum_{y \in C_i} [y] \in Z(k[G])$ operates on the irreducible representation V_β as

$$\frac{c_i \cdot \chi_{\beta}(z_i)}{\chi_{\beta}(1)} \cdot \mathrm{Id}_{V_{\beta}}.$$

(e) The element $\sum_{y \in G} \chi_{\alpha}(y) \cdot [y] \in Z(k[G])$ operates on the irreducible representation V_{β} as

$$\frac{|G|}{\chi_{\alpha}(1)} \cdot \langle \chi_{\alpha}, \chi_{\beta^{\vee}} \rangle \cdot \mathrm{Id}_{V_{\beta}} = \frac{|G|}{\chi_{\alpha}(1)} \cdot \delta_{\alpha,\beta^{\vee}} \cdot \mathrm{Id}_{V_{\beta}},$$

- (1.4) COROLLARY (a) $\frac{c_i \cdot \chi_{\beta}(z_i)}{\chi_{\beta}(1)}$ is an algebraic integer for every conjugacy class C_i and every irreducible character χ_{α} .
 - (b) $\chi_{\alpha}(1)$ divides |G| for every irreducible character χ_{α} of G.

§2. Class function

(2.1) **PROPOSITION** The irreducible functions form an orthonormal basis of the class functions.

PROOF. The orthogonality relation implies that $s \le r$. Suppose that s < r, then there exists a non-zero class function f(x) on G such that $\langle f, \chi_{\alpha} \rangle = 0$ for all $\alpha = 1, \dots, r$. Lemma 1.3(1) tells us that the element $u := \sum_{y \in G} f(y) \cdot [y]$ operates as 0 on all irreducible representations of G, hence it operates as 0 on every finite representations of G. But the action of G on the regular representation of G is clearly nonzero, which is a contradiction. \Box

1

- (2.2) For each i = 1, ..., r, let Δ_i be the class function with value 1 on C_i and value 0 on all other conjugacy classes. The Δ_i 's form an orthogonal basis of the space of class functions, while the irreducible characters χ_{α} 's form another.
 - Clearly $\chi_{\alpha} = \sum_{i=1}^{r} \chi_{\alpha}(z_i) \cdot \Delta_i$
 - Write $\Delta_i = \sum_{\alpha=1}^r b_{i,\alpha} \chi_{\alpha}$. From the orthogonality relation we see that $b_{i,\alpha} = \langle \Delta_i, \chi_{\alpha} \rangle = \frac{c_i \cdot \chi_{\alpha}(z_i)}{|G|}$, i.e.

$$\Delta_i = rac{c_i}{|G|} \cdot \sum_{lpha=1}^r \chi_lpha(z_i^{-1}) \cdot \chi_lpha$$

Equating the values of both sides at z_i we see that

$$\frac{c_i}{|G|} \cdot \sum_{\alpha=1}^r \chi_{\alpha}(z_i^{-1}) \cdot \chi_{\alpha}(z_j) = \delta_{i,j} \quad \forall i, j,$$

which is the other set of orthogonality relations for the character table.