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as if summoned from the void

Copied from [20], part 1 (translated from [13] Grothendieck – Récoltes et semailles, page 49):
And every science, when we understand it not as an instrument of power and domination but as an adventure
in knowledge pursued by our species across the ages, is nothing but this harmony, more or less vast, more
or less rich from one epoch to another, which unfurls over the course of generations and centuries, by the
delicate counterpoint of all the themes appearing in turn, as if summoned from the void.

Introduction
Alexander Grothendieck was one of the great mathematicians in the 20-th century. After his death in 2014
we look back at his life, and at his mathematical achievements.

In his rather short “relatively short” instead? active mathematical life (say from 1948 to 1970) he revo-
lutionized several branches of mathematics. The mathematical landscape changed under his hands.

In this note we try to convey the essential aspects of his endeavor: consider concepts in their most
fundamental properties, leaving out all a priori unnecessary assumptions. In his capable hands fundamental
properties were revealed, with spectacular applications.
His personal life is full of beautiful but also sorrowful aspects. Getting all praise and prizes possible in
mathematics where combined with a growing unstable personality. We are grateful for the rich theory he
left us. It was painful to see his growing struggles with many aspect of life.
In many aspects of the work of Grothendieck we see how previously understood theory, examples and proofs
were generalized. This “quantum leap” from existing theory to deep and new insight we consider as one of
the important aspects of the heritage of ideas by Grothendieck. Many ideas of Grothendieck generalization
have been internalized by later generations, to the extent that it is difficult to imagine how to think about
mathematics without these natural concepts.

At several occasions Grothendieck asked the right question, and expected mathematics to be as beautiful
as possible. If indeed the general structure would be of the kind he expected, he would find a way to describe
it. When the situation was more complex, more complicated, not as beautiful as expected at first sight,
Grothendieck gave up at several occasions, where other mathematicians were finally able to sort out special
cases and described in detail the situation (perhaps not as beautiful as previously expected).
Sources.
Most material contained in the first section “A short biography of Alexander Grothendieck” of this note is
taken from one of the following sources:
http://www.grothendieckcircle.org/ (where further material can be found);
the two books by Winfried Scharlau [24], [26]; see also [29], [25], [28], [27].
The paper [20] (in two parts) gives an excellent survey; Also see [15], [16].
For some details about the mathematical work of Grothendieck not already contained in his published work,
see [31], [10], [22], [30], [32].
Perhaps it is much better to read those sources instead of the material below in section 1.

1partially supported by grant DMS 9800609 from the National Science Foundation
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§1. A short biography of Alexander Grothendieck
(1.1) We will give a very short survey of some of the most important bibliographical details about the life
of Alexander Grothendieck. This material can be found in various sources. For details see
http://www.grothendieckcircle.org/

The subsections 1.1–1.10 are merely excerpts taken from various sources.
The subsections 1.11 and 1.12 are our (partial) personal impressions about Alexander Grothendieck as a
mathematician and as a person.

• Alexander Grothendieck was born in Berlin on 28 March 1928, and he died in Saint-Lizier (France)
on 13 November 2014.

• His mother was Hanka Grothendieck (28 March 1900–16 December 1957). The name of his father
probably was Alexander Schapiro (6 August 1890–1942).

• Childhood 1928–1945 (Berlin, Hamburg, Nı̂mes, internment Rieucros, Chambon sur Ligne).

• Studies in Mathematics in Montpellier, 1944–1948.

• PhD research 1948–1953 (Paris, Nancy) (functional analysis).
The contribution to this field by Grothendieck is discussed in: J. Diestel, Grothendieck and Banach
space theory; see [31], pp. 1–12.

• Brasil, Chicago, 1953–1955 (homological algebra), see [1].
The genesis of K-theory by Grothendieck and his contribution in this field is described in M. Karoubi,
L’influence d’Alexandre Grothendieck en K-theorie; see [31], pp. 13–23.

• In the period 1957–1970 his impressive work on a new approach to algebraic geometry appeared,
initially with the aim of proving the Weil conjectures (Weil formulated these in 1949; Grothendieck
told us about his plan in 1958, see [2]). During most of these years he was at the IHES, Bures-sur-
Yvette, France. In 1966 at the International Congress of Mathematicians in Moscow, Grothendieck
receives the Fields Medal. However, for political reasons, he refused to travel to Moscow.

• Grothendieck resigned his position at IHES in 1970, lived in Paris, Orsay, Montpellier (1973–1984),
Villecun (1973–1979), worked at the CNRS (1984-1985), Les Aumettes (1980–1991); in 1991 he left
and it was unclear where he was living; he moved to Lasserre (French Pyrenees) at some time.

See [24], [26], see http://www.scharlau-online.de/DOKS/cv_groth.pdf

Grothendieck was born on 28 March 1928 as Alexander Raddatz: the husband of his mother Johanna
Grothendieck was Alf Raddatz at that time. His biological father (Alexander Schapiro) declared in 1929
this boy was his child, [24], p. 77, and the name was changed into Alexander Grothendieck. Many interest-
ing things can be said about his parents, see below.

For people close to him the name Schurik is used. Sometimes his first name was spelled as Alexandre. In
this note we will stick to Alexander as first name. We write Grothendieck, meaning Alexander Grothendieck
in this note.
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(1.2) Hanka Grothendieck. Johanna Grothendieck came from a protestant family. Several stories and
documents raise the question whether she was the right person to give guidance and love to her children.

Her childhood in Hamburg shows an intelligent person, with many possibilities. She did not feel happy
in that bourgeois surroundings already at a young age. After a marriage with Alf Raddatz and a difficult
delivery the couple lived in gradually more and more sorrowful circumstances; they walked with their baby
Maidi in a stroller from Hamburg to Berlin, where they had an unconventional life in poverty; see [24], §11,
§12.

Her life in poverty, full of anarchistic ideas does not seem a very happy one. All her life she opposed a
bourgeois life, e.g. as her daughter Maidi said, see [24], page 79: “dass ihre Mutter einerseits streng und
willkürig war, anderseits die Kinder aber zu ganz unbürgerlichen Verhaltem angehalten hat: Sie sollen nicht
grüßen und nicht die Hand geben.” (Her mother was strict and haphazard, on the other hand she demanded
her children to conduct themselves in ways different from the bourgeois norm: they were not to greet, nor
to shake hands with people.)

She lived in Berlin until 1933, and afterwards in France. She wrote a book, 1500 typed pages long,
which did not (yet) appear; see [27], [28]. The last years of her life were full of conflicts; see e.g. [24, §27].

We see a gifted person, with a bad fate and a difficult character. She seemed very attached to the father
of Alexander.

(1.3) Alexander Schapiro. The life story of the father of Alexander, 1890–1942, reads like an adventure
fiction. His name was Alexander (Sascha) Schapiro but in order to hide his jewish roots he could use Sascha
Tanaroff. (Like the famous author Isaac Babel, 1894–1940, who was hiding his jewish root in his Red
Cavalry period by adopting the name Kirill Vasilievich Lyutov.) At the age of 14 he joined an anarchist
group, where he was involved in an unsuccessful attempt to murder Czar Nicholas II in 1905. All members
of the group were executed, however that was not carried out to Sascha Schapiro because of his age. He was
send to prison, freed, captured again, escaped, lost an arm, and finally with the collapse of the Czarist regime
in Russia in 1917 he was released from prison. In 1921 he fled using this forged name Alexander Tanarov.
After many breathtaking adventures he arrived in Berlin. Once Alexander Grothendieck told Cartier “...
with pride and exaltation, that his father had been a political prisoner under 16 different regimes.” See
[31], page 277.

Sascha was impressed by Hanka; and their son Alexander was born in 1928. Hanka, Sascha, Maidi
and Alexander lived as a family of sorts in Berlin until 1933. However as a revolutionary Sascha Schapiro
thought he should not have children, [24], p. 88.

As his life as anarchist and jewish person was in danger in the growing Nazi atmosphere in Germany
(and Sacha could “smell” this as not many other people at an early stage did), Sacha left Berlin for France.
He tried to make a living as a photographer (despite having only one arm). He travelled, went to Spain to
join the Civil War fighters. At the beginning of World War II (1940–1945) Sascha was interned in the camp
of Le Vernet, from which he is deported to Auschwitz in 1942, where he probably died in August 1942.

The life of Hanka Grothendieck and her family in Berlin shows all aspects of an anarchistic life, with
people in these circles and with poverty. It is interesting to compare these stories with the description of
Sebastian Haffner – Geschichte eines Deutschen: Die Erinnerungen 1914-1933, [44] (Defying Hitler: A
Memoir.). Comparing Haffner’s description of Germany at that time, and the sorrowful circumstances of
Hanka Grothendieck and her family it is hard to imagine this happened in the same country, at the same
time. But then we realize the different social circles in which they lived.
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The “other ” Schapiro. It was not easy to pinpoint the right identity of the father Grothendieck. There was
another anarchist with the same name, and the two Schapiro’s were easily confused.

Cartier wrote: As Alexander told me, his fathers political career constitutes a ‘Who’s Who of the Euro-
pean revolution from 1900 to 1940’. See p. 390 in [15].

Winfried Scharlau communicated to me:

If I remember correctly, Grothendieck wrote somewhere that his father is mentioned in John
Reed’s book ’Ten days that shook the world’. In this book only the ‘other’ Schapiro is men-
tioned.

Question. Did Grothendieck know there were (at least) two persons with the same name?

He learned this only after I had told him, 2003 or later. I am not sure that he ever really realized
the confusion. But probably he knew very little, perhaps almost nothing about ‘other’ Schapiro.

Grothendieck was devoted to his parents. In difficult times he took care of his mother, although this was not
easy (especially see §27 of [24]: “Hanka Grothendiecks letzte Jahre”.) He had only few memories to his
father; it is said that Grothendieck had his head shaved in memory of him. A painting portraying Sacha in
his last year was carried by Grothendieck in many of moves changing his address.

In [13] (somewhere 1983 – 1985) he wrote: “Ich brachte meinem Vater und meiner Mutter eine gren-
zenlose Bewunderung und Liebe entgegen. Ihre Personen waren für mich das Maß aller Dinge.” (For my
father and my mother I had an unlimited admiration and love. For me they were the measure and extent of
everything.)

(1.4) Childhood 1928–1945. The period 1928 until 1933 the family lived in Berlin.
In the Fall of 1933 dramatic things happened. Sascha Schapiro went to France.

As Hanka wanted to follow Sacha she sent her daughter Maidi to a boarding school for handicapped chil-
dren (although the girl wasn’t handicapped at all). She negotiated with Wilhelm and Dagmar Heydorn in
Hamburg-Blankenese whether they could take care of her 5-years old child. She told all kind of stories
about herself, about the father and she offered 100 Marks per month. These people took care of several
young children, and they were willing to accept also this child under these conditions.

In December 1933 Hanka brought Alexander the Heydorn family near Hamburg, a heart-breaking story.
Please read this as told by Dagmar Heydorn, [24], pp. 92/93. Here is an abstract. Hanka showed up at the
door with her young boy, and said right away that she was very poorm and cannot afford to pay anything,
contrary to what the Heydorns had been led to believe; she also admitted that she had lied in other parts of
her story. She had only three conditions on her son’s education education:
1) do not talk with him about God;
2) do not send him to school, but let Wilhelm Heydorn do the teaching;
3) do not cut his hair.
In this confusing situation they showed the little Schurik what could be his room. When they came down
again mother Hanka had disappeared. The child never asked for his mother, as Dagmar Heydorn reports. But
they did send him to school. He went to primary education (“die Volksschule”), and later to a gymnasium.
In later years Grothendieck kept contact with the Heydorn family, and we have the impression he had very
good memories of that period in his life.
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In 1939 difficulties arose. It was unclear the Heydorn family could keep the children, and the fact that
Alexanders father was a jew might cause problems. They decided to send the child to his mother in France.

Hanka and Alexander were interned as “undesirable” in the Rieucros Camp near Mende. From there
he went to school in the village four or five kilometers away. After the Rieucros camp was dissolved, the
inmates were transferred to Gurs. Alexander was sent to the village Le Chambon sur Lignon, and attended
the famous Collège Cévénol. In 1945 his rather chaotic school-career ended by his successful baccalauréat
examination.

The following is a short description of Alexandre Grothendieck, written by the woman who ran La Guespy,
apparently written down shortly after the war. M. Steckler was the surveillant at La Guespy (of whom the
notes say: “Je me le rappelle jouant férocement aux échecs avec Alex.”)

“ALEXANDRE GROTHENDIECK dit Alex le Poète, allemand, russe? enfant très intelligent,
toujours plongé dans ses réflexions, ses lectures, écrivant, très bon joueur d’échecs parties
acharnées avec M. Steckler Reclame le silence pour écouter la musique. Sinon enfant tapageur,
nerveux, brusque.“

http://www.grothendieckcircle.org/

(1.5) Studies in Mathematics. PhD research.
Copied from http://www.grothendieckcircle.org/

1945–1948: Grothendieck and his mother moved to a small village near Montpellier; he worked irregularly
on a farm while studying mathematics at the university of Montpellier.

1948/49: Having obtained his degree, Grothendieck went to Paris in view of obtaining a doctorate. He took
several courses and met most of the famous mathematicians of the time, above all H. Cartan.

1949–1953: Cartan advised Grothendieck to do his doctorate in Nancy with Laurent Schwartz. He goes
there and finishes his doctorate within two years, finding a new theory of nuclear spaces (topological vector
spaces with many of the good properties of finite-dimensional vector spaces). For a description of this field,
and the contribution [18].

(1.6) Homological algebra.
1953/1954: Grothendieck spent time in Sao Paulo in Brazil, teaching topological vector spaces. At the end
of 1954, he was ready to “leave the field of topological vector spaces with no regrets and start seriously
working on algebraic topology”.

1955–1957: Grothendieck spent part of the year 1955 at the University of Kansas in Lawrence, Kansas,
then visited Chicago. He hoped to find a position in France, had difficulties however because of his foreign
nationality.

In this period of times his interests shifted from topological vector spaces to algebraic topology and
algebraic geometry. Rapid progress were being made in these areas. It was only natural that Grothendieck
with homological algebra, and he wanted to learn it well. However the influential book [40] by Cartan
and Eilenberg was not yet available. (It appeared in 1958). Instead of reading preliminary versions of [40]
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that already circulated at the time, Grothendieck decided to develop the theory from scratch. The resulting
is the memoir [1], a grand synthesis which incorporate homological algebra for modules (of rings) and
sheaf theory under a general framework. Ideas in this paper have had a large impact on the development of
modern “abstract” mathematics. In later work by Grothendieck we see his ability to work with such abstract
structures that was far ahead of his time.

In December 1955 Grothendieck discovered the formula Hp(X ,F )′ = Extn−p
O (X ,F ,Ωn) for a coherent

sheaf F on an n-dimensional projective smooth variety X ; see [10, pp. 19–20]. The left-hand-side of the
equality denotes the dual vector space of Hp(X ,F ). This formula is a special case of the Grothendieck
duality theorem; an early version appeared in [5], exp. 149, 1957.

(1.7) Riemann-Roch. The first salvo after the memoir [1] came in the form of the Grothendieck-Riemann-
Roch theorem, announced in the opening sentence “Ci-joint une démonstration très simple de Riemann-
Roch, indépendante de la caractérisque.” (You will find enclosed a very simple proof of the Riemann-Roch
independent of the characteristic) of the letter [10, p. 57] dated November 1st, 1957. The first published
proof [38] (with an appendix [7] by Grothendieck) is the notes of a fall 1957 seminar at the IAS Princeton,
on the paper Classes de faisceaux et théorème de Riemann-Roch enclosed in the 11.1.1957 letter. The latter
was eventually published in SGA6, pp. 20–77. We refer to [21] for an account of Grothendieck’s influence
on K-theory.

(1.8) A new approach to algebraic geometry.
“this seemed like black magic.” Mumford, [31], page 78.

In 1949 André Weil formulated his conjectures about an analogue of the Riemann hypothesis in character-
istic p (we will refer to this by pRH, in order to avoid confusion with the classical RH). This was initiated
earlier and partial results were achieved by Emil Artin, F. K. Schmidt and H. Hasse in the period 1924–1936.
Weil proved the pRH for curves and for abelian varieties over finite fields. He had the incredible insight that
an analogue of the Lefschetz fixed point theorem could finish the proof in the general case of arbitrary vari-
eties over finite fields. The “only problem” was to define an appropriate cohomology theory and prove this
analogue of the Lefschetz fixed point theorem in that context. For a historical survey of this material see
[53], [48]

This challenge is typically the kind of thoughts in mathematics where Grothendieck was best at: develop
a general structure, and what you are looking for should come out by itself. At the Edinburgh 1958 ICM
Grothendieck gave a talk; one person in the audience seemed to understand what was going on (that was
before I (i.e. FO) knew that was Serre), and this was the beginning of a new era in algebraic geometry.

Indeed this cohomology was constructed, and almost all aspects of the Weil conjectures were proved by
Grothendieck and co-workers. One aspect remained unproved (the fact about the eigenvalues of Frobenius).
This was proved by Deligne (for which he received the Fields medal in 1978). Grothendieck was not very
satisfied: more general conjectures, the “standard conjectures” (1969), should be proved, and the Weil
conjectures would follow without much effort. Below is a comment on page 214 of [31], about a passage on
pages 125–126 of [10]: “Grothendieck could not prevent himself, later, from expressing bitter disapproval
of Deligne’s method for finishing the proof of the Weil conjectures, which did not follow his own grander
and more difficult plan.” However these more general conjectures seem out of reach for the time being, even
now after more than 50 years.

It might be that Grothendieck started considering this question and that he started studying algebraic geom-
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etry around 1956. In 1958 Grothendieck told us he was starting to put algebraic geometry on a new footing.
Just imagine, a respectable old part of mathematics, where we thought we had most ideas and methods at
our disposal. A completely new setup is constructed, not immediately accepted by everyone. But now we
know this is “the best” way of looking at these objects. In Section 3 we portray some of these ideas. We
hope you are convinced this really is a revolution. His parents wanted a revolution, their son Alexander
made the necessary blueprint in a superb way in this part of mathematics. In this note we hope we can show
some aspects of this new way of looking at this part of mathematics.

In the period 1957–1970 Grothendieck, assisted by many colleagues and students, wrote thousands of
pages, mostly on general theory. In 1966 at the International Congress of Mathematicians in Moscow,
Grothendieck received the Fields Medal. However, for political reasons, he refused to travel to Moscow.

(1.9) Political and ecological activities.
“He seemed to believe that social issues can be settled with the same kind of proofs as mathematical

ones, and in fact often ended up actually irritating people even when they were aware of this his importance
as a mathematician and perfectly perceptive to the ideas he was expressing.” See [31], pp. 283/284.

For Grothendieck’s ecological activities see http://www.grothendieckcircle.org/ .
As complying with his character in a clear and very active way, he was upset about violence and the use of
weapons. In November 1967 he travelled to Hanoi, Vietnam, and in several talks he described the horror of
the Vietnam war.

He started a “movement” called “Survivre et vivre”:
Struggle for the survival of human mankind,
survivre: survive and oppose effects of our industrialized life: pollution, destruction of our environment and
of natural resources;
vivre: live and abolishing the contradiction between scientific research and population, especially in military
dangers and conflicts.

The momentum was there. Many people were convinced something like this had to be done. I remember a
meeting at the ICM in Nice, 1970. That year “Survivre et vivre” was founded. A packed lecture hall was
expecting to hear from Grothendieck what we were going to expect, and was to be done. The meeting ended
in chaos. Grothendieck asked (if I remember well) whether anybody had any ideas. Some people on the
first rows starting to shout, to discuss, and we did not get anywhere. — Where Grothendieck had great ideas
about mathematics it seems that on this topic he could not make his concern and his emotions concrete in
well directed and fruitful actions.

(1.10) After 1970.
The last time I saw Grothendieck in person

was I believe in Kingston, Ontario, in 1971. At that time, when asked to give a mathematical talk, he would
request equal time to speak about his peace work and his organization Survivre. He was drifting away from
mathematics and applying his brilliant mind to problems of humanity. No matter how logically persuasive,
I thought his efforts in that direction were politically naı̈ve. R. Hartshorne, [31], page 173

The fruitful period of active mathematics ended in the case of Grothendieck in 1970. We can speculate why
such drastic actions were taken. Grothendieck resigned from the IHES, because he found out that (a very
small portion of) the financial means of the institute came form military sources.
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However we can speculate there were other reasons.
We can see that his personality became more and more unstable.
His desire to fight social aspects in the style of “Survivre” did not result in a really effective outcome.
Also we might think that the burden he had taken of revolutionizing algebraic geometry was heavy: in

1960 he thought to finish his 13 chapters of Éléments de géométrie algébrique in a few years; on 18-08-1959
he wrote to Serre his schedule for finishing EGA for the next 4 years, see [10], page 83. (The plan for the
thirteen chapters can be found on on page 6 of EGA I.) In 1966 Grothendieck was more realistic, writing to
Mumford that probably chapters V to VIII would take another eight more years, ... and by then we will have
a clearer picture of what would be most useful to do next — and maybe to decide whether we should push
the treatise further at all. See his letter to Mumford on 4 November 1966, [22], pp. 719/720. In 1970 only 4
chapters (in 8 volumes) had appeared (“only”? a rich source of beautiful theory). Material for the remaining
chapters appeared in (more or less) preliminary form in the seminars SGA [4], and in Bourbaki seminars
[5]. In [11], on page 51, he wrote that finally he could start doing research (“m’élacer dans l’inconnu”)

We see that in November 1966 Grothendieck still considered going on and perhaps finishing EGA. The fact
that a small part of the funding for the IHES came from military sources is often mentioned as the reason
why Grothendieck resigned from his position (and severed later ties with the mathematical community). In
January 1970 Grothendieck writes that he stopped working at the IHES, [31], page 745; however a few day
later he communicated also to Mumford that “things got arranged , as I was backed by my colleagues from
IHES for demanding no military funds should be used for the budget · · · Thus I have taken up my job at
IHES again, · · ·”, [31], page 747.

After Grothendieck had left the scene, we had to move on; we could use the beautiful ideas by Grothendieck,
but no more follow up of the period 1958 – 1970 did come out.

The period 1970 – 2014 showed a disturbed person, still with great ideas, but also with haunted patterns
in his thoughts. He changed address several times. Quite often we had no idea where he was. He wrote
long texts, partially with profound mathematical ideas (not all of them understood yet), sometimes with sour
memories, and also containing difficult to follow phantasies.

Here is a list of texts we know he did write them in that period, copied from [25]:

1979: L’Eloge de l’Inceste (In Praise of Incest) (January to July 1979, perhaps lost)

1981: La Longue Marche à Travers la Théorie de Galois (The Long March through Galois Theory) (January
to June 1981, about 1,600 pages, plus about the same amount of commentary and supplementary material;
unpublished, but since 2004 parts have been available on the Internet).

1983: À la Poursuite des Champs (Pursuing Stacks) (approximately 650 pages, started as a “letter” to D.
Quillen, unpublished). Associated with this is an extensive correspondence with Ronnie Brown and Tim
Porter.

1984: Esquisse d’un Programme (Sketch of Program) (January 1984). This is still a rich source of ideas.
Grothendieck wrote this as an application for a position. We find the text in [63].

1983 – 1985: Récoltes et Semailles: Réflexions et Témoignage sur un Passé de Mathématicien (Reapings
and Sowings: Reflections and Testimony on the Past of a Mathematician) (1252 pages plus approximately
200 pages of introduction, commentary, and summaries; produced as photocopies; available on the Internet).
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1987: La Clef des Songes (The Key to Dreams) (315 pages, unpublished).

1987 – 88: Notes pour la Clef des Songes (Notes on the Key to Dreams) (691 pages, unpublished); includes
a freestanding work, Les Mutants.

1990: Développements sur la Lettre de la Bonne Nouvelle (Developments on the Letter of Good News) (82
+ 2 pages, unpublished; written February 18 – March 15, 1990).

1990: Les Dérivateurs (about 2,000 pages, unpublished, but parts available on the Internet).

Just an example: one of the lines in “The Key to dreams” reads: Der Einzige Gott schweigt. Und wenn Er
spricht, dann mit so tiefer Stimme, dass ihn niemand jemals versteht. (The only God is silent. And when he
speaks it is with such a low voice, that no one can understand him.)

(1.11) Some characteristic aspects of the work of Grothendieck.
... mon attention systématiquement était ...

dirigée vers les objets de géneralité maximale ...
Grothendieck on page 3 of [11]; see [63], page 8

In all of his work in mathematics Grothendieck was original and fundamental. Already in his PhD the-
sis he made a fundamental contribution and gave a new insight in a field, and on questions where other
mathematicians did not have that insight.

Going to a new field he rewrote theory where others were just starting to understand these structures.
Then around 1956–1958 Grothendieck started to work in algebraic geometry, a field with a rich history,

and with already many existing theory. He told us that this was because he was planning to solve the
Weil conjectures. However, do not give the interpretation that this was “problem solving”. In many cases
Grothendieck told us finding the structure involved was the only essential thing to do and then the solution
would come out by itself: “immerse a large nut in a softening fluid, and the nut opens just by itself”. We
have seen many instances where going to the very roots and pure thought gave insight and solved difficult
problems.

For Grothendieck mathematics seemed elegant and results should come just by pure thought. Hence his
amazement: “I found it kind of astonishing that you should be obliged to dive deep and so far in order to
prove a theorem whose statement looks so simple-minded.” Letter from Grothendieck to Mumford, [22],
page 717.

Whenever an idea would show up Grothendieck could develop a whole structure, much more than needed
for the application at hand. Other mathematician trying to solve a problem could be satisfied seeing the
general pattern, use it and move to another topic. Grothendieck could try to describe the idea in the most
general situation, applications already out of sight; quite often it turned out that such a general theory had
many unexpected, applications to other problems.

We will give one example later not sure where to point to YYYrefer to GrTopol and Etale Cohomol: a
new concept of “coverings in some topology” was needed; the new idea in the guise of the “etale topology”
needed for direct applications can be written down in just a few pages. It took Grothendieck several hundred
pages (three volumes in Lect. Notes Math. 269, 270, 305) to describe in SGA4 the much more general
notion of a “Grothendieck topology”. An impressive and useful theory. LNM 305, written mostly by Artin,
does not contain description of Grothendieck topology.
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However, sometimes in mathematics a solution does not “come by itself”. Serre wrote: “ ... obtaining
even good results ‘the wrong way’ using clever tricks to get around deep theoretical obstacles could
infuriate Grothendieck.” See [30], page 18. We know examples where a direct approach in the hands of
Grothendieck did not work out, where he left the question, while others did successfully proceed with a
combination of theory (often developed by Grothendieck) and direct verification of special cases, making
non-obvious choices or other “non-canonical” choices. For some examples see [23], §8.

Grothendieck had the good fortune to have Serre and Mumford at his side. These colleagues often answered
questions and gave examples needed for Grothendieck to see whether a certain theoretical approach would
be reasonable. In [10] and [22] we see many examples along these lines.

At some instances Grothendieck had no interest in work done by others following his ideas, or supplement-
ing possible approaches. Possibly this was part of his character. Also it gave Grothendieck the chance to
follow his own deep thoughts without loosing time on other approaches.

(1.12) Some aspects of the person Alexander Grothendieck.
Sometimes aspects of a childhood are used to “explain” a character; we will refrain from this.

Grothendieck could feel and work in an intense way. See his wording as an adult of his childhood feelings
for his parents: “For my father and my mother I had an unlimited admiration and love”.

In his active years in mathematics he worked for many hours a day. He wrote hundreds of pages of
flawless mathematics.

In 1945: enfant trés intelligent, toujours plongé dans ses réflexions, ses lectures, écrivant, Sinon enfant
tapageur, nerveux, brusque.
(A very intelligent child, always immersed in his thoughts, his books and what he is writing. However a
noisy, nervous and lively child.)

Later he wrote long manuscripts, more and more mixing mathematics with religious feelings, philosophical
ideas and strange phantasies. We wonder how one person could produce this many pages.

After 1970 until the end of his life he made several drastic decisions, not trusting other people, destroying
manuscript and letters (also of his parents), staying away from people. The picture of a tormented, disturbed
person emerges.

Some students and colleagues have nice memories to Grothendieck. Difficult relations, and a sour and a
hateful opinion of Grothendieck of some other people makes us sad. Whatever he did or felt he did so in an
absolute and drastic way.

What he lacked in parental love in his childhood, he could not give to his own children.

§2. Tohoku
For my own sake, I have made a systematic (as yet unfinished) review of my ideas of homological
algebra. I find it agreeable to stick all sorts of things, which are not much fun when taken
individually, together under the heading of derived functors.
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(2.1) From the paragraph containing the above passage on page 6 of [10] written from Lawrence, Kansas on
February 18, 1955, we know that Grothendieck has made substantial progress in his synthesis of homological
algebra by then. He wanted to teach a course on homological algebra based on the not-yet-published book
[40] by Cartan and Eilenberg, which was destined to be enormously influential, but he couldn’t get hold
of a copy of the manuscript. His solution was to work out by himself everything he presumed would be
in [40]. The result was the memoir [1], often sited as Tohoku. A preliminary version was sent to Serre on
June 4, 1955 for the coming Bourbaki Congress, where it was read carefull and “converted everyone”; cf.
[10, 16–18]. The final version, which Grothendieck called his multiplodoque d’algèbre homologique, was
written in the months of September–October 1956 and was accepted by Tannaka in November 1956 for the
Tohoku Journal.2

The Cartan–Eilenberg book [40] itself is a great work of synthesis of the developments of algebraic
methods in topology and their applications during the period 1935–55. The book [40] is mostly about the
theory of derived functors between categories of modules over rings. However theory of sheaves, con-
ceived by Leray and developed in the late 1940’s (e.g. Séminaire Henri Cartan 1950/51) with spectacular
applications [55], [56], [57], [58] in the hands of Serre, does not fit in [40].

Grothendieck began studying homological algebra in 1954 when he was in São Paulo. In less than a
year, he succeeded in formulating a notion of abelian categories, and produced a general theory of derived
functors on abelian categories, with cohomology of sheaves and the homological algebra for modules as
special cases; see [10, pp. 13–14]. Serre brought an early draft of [1] to a Bourbaki meeting in the summer
of 1955; later he wrote to Grothendieck that “your paper on homological algebra was read carefully and
converted everyone (even Dieudonné, who seems to be completely functorized!) to your point of view”,
[10, p.17].

(2.2) The idea of doing general homological algebra in a category with properties similar to that of the cate-
gory of all modules over a ring was known to Cartan and Eilenberg; c.f. [10, p. 15], [39], [45]. Grothendieck
defined an abelian category to be an additive category satisfying the following two axioms:
(AB 1) Every morphism has a kernel and a cokernel
(AB 2) For every morphism u : A→ B, the morphism Coim(u)→ Im(u) induced by u is an isomorphism,
where Coim(u) := Coker(Ker(u)→ A) and Im(u) = Ker(B→ Coker(u)). Grothendieck formulated an im-
portant property that an abelian category may satisfy:
(AB 5) Filtered limits of objects exist, and filtered limits of exact sequences are exact.

The standard notion of injective and projective modules generalize immediate to abelian categories. Just
as in the case of modules, if an abelian category C has enough injectives in the sense that every object of C
can be embedded in an injective object, then one can use injective resolutions in C to define right derived
functors RiF , i≥ 0, of a covariant functor F : C→ C′ between abelian categories.

Theorem 1.10.1 of [1] says that if an abelian category C satisies (AB 5), and there exists an object U
such that every object in C is a quotient of U⊕I for some index set I, then C has enough injectives. It follows
that the category of sheaves of abelian groups on a given topological space X has enough injectives. So one

2See p. 43 and p. 49 of [10]; the following tidbits are also found in [10, pp. 43–49]. Grothendieck asked Serre for his opinions
about his multiplodoque and asked for suggestions where to publish it. He didn’t want to comply with the editorial requests for
the Transactions from Eilenberg, which he called “tabous de rédaction tres sévères de Sammy”. Serre was unsympathetic, telling
Grothendieck that his objections were “idiotes”, and that all Eilenberg demanded was that a manuscript should be “lisible sans
effort d’intelligence”, which Serre considered the least one could ask (“c’et bien le moins”).
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can define derived functors of the global section functor F 7→ Γ(X ,F ) for sheaves F of abelian groups on
X ; they are the cohomology groups Hi(X ,F ) of F .

Theorem 2.4.1 of [1] provides a generalization of Leray spectral sequence, which include many spectral
sequences used in algebraic topology and algebraic geometry: Suppose F : C →C ′ and G : C ′→C ′′ are two
additive functors between abelian categories. Assume that C ,C ′ have enough injectives. Assume moreover
that G is left exact and RiG(F(I)) = 0 for all i > 0 for all injective objects I in C , then there is a functorial
first quadrant E2 spectral sequence

E i, j
2 (A) = Ri(R j(F(A)) =⇒ Ri+ j(G◦F)(A) i, j ∈ N

for all objects A in C .

(2.3) Examples.

(a) A sheaf S on a topological space X is said to be flabby if every section of S over an open subset of
X extends to a global section of S over X . One can verify directly that if S is flabby, and 0→ S→
F1→ F2→ 0 is a short exact sequence of sheaves of abelian groups, then the map Γ(X ,F1)→ F is
surjective. From his lemma plus the fact that every injective sheaf is flabby, it is not difficult to show
that Hi(X ,S) = 0 for all i > 0.

(b) ([1, p. 160]) Hi(X ,A) = 0 for all i > 0 if A is the constant sheaf attached to an abelian group A and
X is an irreducible topological space X in the sense that the intersection of any two non-empty open
subsets is non-empty. Note that the Zariski topology of any variety in the sense of 3.6 is irreducible.
So constant sheaves on a variety have only trivial cohomologies. This is what one expects, because the
Čech complex attached to every finite (or locally finite) open covering of an irreducible topological
space is contractible.

(c) ([1, 3.4.1]) The cohomology groups Hi(X ,O×X ) for the Zariski topology of a variety X over a field
with coefficients in the group of units of the structure sheaf OX vanish for all i≥ 2.

(d) ([1, 3.6.5]) If X is a Noetherian topological space of combinatorial dimension at most n, then for any
sheaves of abelian groups F on X , we have Hi(X ,F) = 0 for all integers i≥ n+1. This theorem was
proved in January 1956; see [10, p. 26]

We recall that a topological space is Noetherian if every decreasing sequence of closed subsets is
stationary. A Noetherian topological space has combinatorial dimension (or Krull dimension) at most
n if every strictly decreasing chain of irreducible closed subsets has at most n+1 elements. Varieties
over fields with Zariski topology (see 3.6) are typical examples of Noetherian topological spaces;
the combinatorial dimension of a variety V over a field K is equal to the dimension of V , i.e. the
transcendence degree of the function field K(V ) over K.

(2.3.1) REMARK. (i) Three years after the discoveries in [1], Grothendieck applied the formalism in [1] to
algebraic geometry as he promised on the second page of [1], proving a finiteness theorem for cohomologies
of coherent sheaves relative to a proper morphism of schemes, including a cohomological proof of Zariski’s
Main Theorem; see his 1958 letter to Zariski, [22, pp. 633–634]. The statement (d) above played a crucial
role in Grothendieck’s proof through downward induction.

(ii) The case i = 2 of the statement (c) above implies that every Zariski locally tribal algebraic fibration a
variety whose fibers are projective spaces Pn is in fact trivial: twisted forms of Pn which appear “in nature”
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are not locally trivial for the Zariski topology. This observation may serve as part of the motivation for a
“finer topology” on algebraic varieties. It turns out that the for the étale topology, to be discussed in ???,
there are many locally trivial Pn fibrations.

In contrast because of Hilbert’s theorem 90, the Zariski topology is quite adequate for studying principle
homogeneous spaces for GLn, or equivalently vector bundles, over varieties.

§3. Varieties and schemes
I want to talk about how Grothendieck’s revolution profoundly

affected my own understanding of algebraic geometry.
David Mumford, [31], page 75

Some references: See [64], [62] for the theory of varieties, [57] for the theory of coherent sheaves on
varieties over an algebraically closed field. The multi-volume EGA is a comprehensive treatment of the
theory of schemes; [43] is a standard textbook with manageable size.

(3.1) [32, p. 43]

(3.2) Algebraic geometry describes geometric object with the help of algebraic equations (polynomials).
In almost every part of mathematics these methods are applied, but especially in number theory and in
complex geometry. In this section we give a survey of some notions developed in the last two centuries,
and we indicate where Grothendieck fits into this picture (but — alas — this is not a complete history of
algebraic geometry).

• In the 19-th century these topic were coined. We mention Hurwitz and Klein, but especially Riemann
who showed us (in the case of Riemann surfaces) that we can define geometric structure by local
charts, where the transition functions describe in which context we are working (complex analytic,
topological, algebraic, etc.).

• In the beginning of the 20-th century Italian geometers proved an impressive amount of geometric
theorems; among them we see Luigi Cremona (1830 – 1903), Guido Castelnuovo (1865 – 1952),
Federigo Enriques (1871 – 1946), Francesco Severi (1879 – 1961) and Beniamino Segre (1903 –
1977). Later their beautiful geometric approach was shown in some cases to lack algebraic rigor.

• Algebraic foundations were laid in the middle of the 20-th century (Bartel L. van der Waerden, Oscar
Zariski, André Weil, and many others).

• In 1955 Serre took up methods of sheaf theory in order to unify these concepts.

• From 1958 Grothendieck revolutionized algebraic geometry. He showed us the way to describe these
concepts.

In this section we will describe the notion of an algebraic variety as was done up to Weil’s [64]. We
will indicate the introduction of sheaf theory as in [57] by Serre, and describe the notion of schemes as
introduced by Grothendieck. We show in which way this generalizes the concept of algebraic varieties, and
how it opens up new applications.
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A historical remark. It seems that the terminology “scheme” was introduced by Chevalley; see [31], page
275, footnote 10. It took Grothendieck three years to arrive at the insight that the one should drop both
the Noetherian and Jacobson condition on commutative rings and include all prime ideals in the affine
spectrum. According to Tate [32, p. 43]: “Schemes were already in the air, though always with restrictions
on the rings involved. In February 1955 Serre mentions that the theory of coherent sheaves works on the
spectrum of commutative rings in which every prime ideal is an intersection of maximal ideals. A year later,
Grothendieck tells of Cartiers introducing the technically useful notion of quasicoherent sheaf on arithmetic
varieties made by gluing together the spectra of noetherian rings. But it would take two more years before
Grothendieck realized that the noetherian condition should be dropped and one should include all prime
ideals in the spectrum, that in the end, as Serre puts it in the notes, the best category of commutative rings is
the category of all commutative rings.”

(3.3) Affine varieties. We consider a field K and K ⊂ k, where k is an algebraically closed field. We write
K[T ] = K[T1, · · · ,Tn] for some n ∈ Z>0. For an ideal I ⊂ K[T ] we write Z (I) =V for the ”set of zeros of I”
defined by: for every field extension K ⊂ L

Z (I)(L) := {t = (t1, · · · , tn) ∈ Ln | g ∈ I⇒ g(t) = 0}.

One can “visualize” this as “the set” V (k) ⊂ kn. However we should be careful in identifying an algebraic
variety with the underlying set of points (in a given field).

In case I ⊂ K[T ] has the property that I·k[T ]⊂ k[T ] is a prime ideal, we say that Z (I) =V is an affine
algebraic variety.

(3.4) Abstract varieties. In this section we discuss affine varieties and affine schemes. In general we need
more general notions such as abstract varieties, varieties locally given by an affine variety, with algebraic
transition functions, and notions such as (quasi)-projective varieties. Certainly for algebraic geometry these
more general notions are of vital importance. However for a first understanding and for comparison with
schemes it suffices to describe the affine variants.

Below we discuss affine schemes (and omit descriptions of arbitrary schemes).

(3.5) Complex varieties. Consider the case K = k =C. For a variety V the set V (C) has a natural topology
called the complex topology, given by the norm on C. This seems a natural choice. For many years we
worked with complex varieties defined this way. For example see [42], completely devoted to this approach,
with many impressive results.

Clearly there is a difficulty in applying such methods to number theory. Analytic functions and rational
values are objects living in different worlds. For such applications we need other techniques.

A lot of work was done, and this topic is now well understood: compare properties of an algebraic
variety V over C with analytic and topological properties of V (C); which analytic varieties are algebraiz-
able? Earlier work by Lefschetz and Chow was finished in [58]. It inspired Grothendieck to one of his
influential theorems, the Lefschetz-Chow-Grothendieck “existence theorem” (theorem of GAGA type); for
a description and references see Chapter 8 by L. Illusie in [6].

(3.6) The Zariski topology. Zariski considered a topology on an arbitrary algebraic variety. For notions as
in 3.3 a closed set in V is defined as the zeros of an ideal in K[T ]/I.
Example. Consider V = A1

K , given by I = (0) ⊂ K[T ], the “affine line over K”. We see that the empty set
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and the whole of V are closed; all closed sets consist of the zeros of some polynomial; hence such a closed
set is a finite set in V (k) or equal to V (k). Is this interesting?

E.g. for K = C this topology is very different from the complex topology; the Zariski topology at first sight
seems much too coarse to be interesting. However experience has shown us that this opens the door to deep
notions in algebraic geometry.

(3.7) Varieties and sheaves. Say V is an affine variety over an algebraically closed field K = k as in 3.3
given by I ⊂ K[T1, · · · ,Tn] and V =Z (I); over an algebraically closed ground field we can “identify” V and
V (k) as we will do here. Let us suppose I is a prime ideal. We write

A = AV = K[T1, · · · ,Tn]/I,

called the coordinate ring of V . Elements of AV can be interpreted as functions on V with values in k.
Moreover, in this special case, f ,g ∈ AV are equal if and only if these associated functions are equal. For a
point t ∈V we write Pt ⊂ AV for the set

Pt = { f ∈ AV | f (t) = 0}.

We see this is a prime ideal. We write OV,t for the localization of AV with respect to Pt :

OV,t = (ArPt)
−1A = {g

h
| g,h ∈ A, h 6∈ Pt}.

This is a local ring; every element of this ring is regular (has no poles) in a Zariski open neighborhood of t
in V . The union

OV = ∪t∈V OV,t

is what is now called “the sheaf of germs of regular functions on V ”, as was done in [57]. XXXdef sheaf
also as functor: In XXX we will comment on this, and discuss another notion of sheaf, however basically
equivalent to the one considered here. The importance of this concept is that local and global properties
of V are combined in one description. For this definition and much more concerning sheaves we refer to
the influential paper [57]; Serre received the Fields medal in 1954 for his “investigations in the homotopy
theory and the theory of sheaves”. See http://www.mathunion.org/ICM/ICM1954.1/Main/icm1954.
1.0161.0174.ocr.pdf

From now on we use sheaves without further explanation.

(3.8) At this moment (of reading this paper, or of considerations in the history of algebraic geometry) just
contemplate what can be done after laying foundations and introducing concepts as described above. We
see that “classical” algebraic geometry serves well for describing algebraic varieties over an algebraically
closed field. However we soon find out drawbacks. We describe some of them.

(3.8.1) An intersection of two varieties need not be a variety. Examples are easy to give. For example
intersect a plane conic C with a line Z. If Z is not tangent to C we obtain two points (either defined over the
base field or “conjugate”). However if Z is a tangent line we feel the interaction as a “point with multiplicity
two”; how can we describe this in the theory of varieties ?
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(3.8.2) Different ideals can describe the same zero-set. Consider the ideals

(X ,Y ), (X ,Y 2) (X3,Y )⊂ K[X ,Y ].

Cleary they all define the set {(0,0)} as zero set, but we like to feel these three sets as different: the first
is just a point, the second is a “double point” in the vertical direction, and the last one is a “triple point”
in the horizontal direction. We like to distinguish these (and many more variations on the same theme), as
different objects, as different subobjects of A2.

(3.8.3) Over a non-algebraically closed field we are sometimes in trouble. It may happen that V is
defined over K, but V (K) is empty, or perhaps non-empty but not Zariski dense in V . How do we describe
“points on V ”?

What happens if I is a prime ideal in K[T1, · · · ,Tn] but I·k[T1, · · · ,Tn] is not a prime ideal? What do we
study as “the set of zeros of I”?

(3.8.4) Consider a non-perfect field K of characteristic p; let a ∈ K such that p
√

a 6∈ K. Consider

I = (T p−a)⊂ K[T ].

In this case Z (I) is not “a variety over K” in the terminology of 3.3: although I ⊂ K[T ] is a prime ideal,
I·k[T ] is not a prime ideal. How should we handle “Z (I)” in this case?

(3.8.5) Families of algebraic varieties are difficult to handle; algebraic geometry in mixed character-
istic is difficult to describe well. Many attempts were done to describe such methods and questions, quite
natural in algebraic geometry. Let us give one example. See the influential paper [51] by Néron; suppose
given an abelian variety A (e.g. an elliptic curve) either over the generic point of a non-singular algebraic
curve Γ, or over the field of fractions of a discrete valuation ring R (two aspects of the same kind of situ-
ations). Is there a “best way” of extending this to a family (of some sort) over Γ, or an object with R as
“ring of constants”; once this is done we can then study the fiber over any closed point in Γ, or we can
study the situation after the reduction of constants R→ κ over the residue class field; this is a way to find
“the best degeneration” of A. What is the satisfactory theory to describe such situations and to decide which
degenerations are possible? In [51] we find a technical, valuable theory; this has had an impact on algebraic
geometry; however these techniques were difficult to understand and to handle.

For example consider an elliptic curve E over Q, and let R = (Zr (p))−1Z be the ring of fractions with
denominator not divisible by a given prime number p. What is the “best way” of extending E to the ring
of constants, and deriving the “reduction mod p” of E? A rich theory, that of Weierstrass minimal models,
gives some answer; but then you find out drawbacks of this, and e.g. you see that the Néron minimal model
in general is not described by the Weierstrass minimal model; you see the technical difficulties. How do you
describe in the old theory of varieties such phenomena?

Questions and examples of this kind were well-known and studied by sometimes rather ad-hoc methods.
These ideas were put on one footing once Grothendieck developed the theory of schemes.

(3.9) Affine schemes. One aspect of the way Grothendieck approached mathematics: work in a situation
as general as possible, delete all assumptions not strictly necessary. Thinking about “algebraic varieties”,
why would we work over a base field? Why do we consider coordinate rings only in the case of integral
domains? Once you adopt a more general idea, there is a clear definition.
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Definition. Let A be a commutative ring with 1∈ A. Let X be the set of prime ideals in A (N.B. a prime ideal
is not the whole ring). Consider the Zariski topology on X . For x ∈ X , corresponding with Px ⊂ A, define

OX ,x = (ArPt)
−1A, and OX = ∪x∈X OX ,x,

considered as a sheaf on the topological space X . The pair (X ,OX) is called an affine scheme. We write
Spec(A) = (X ,OX), or sometimes Spec(A) = X .

One can define morphisms (X ,OX)→ (Y,OY ) by having a continuous f : X→Y map plus ”pulling back
functions”, a section in OY over some open set U ⊂Y is mapped onto a section in OX over the inverse image
f−1(U)⊂ X . In this theory it is proved that

Hom(Spec(A),Spec(B)) = Hom(B,A)

the first “Hom“ =HomSch standing for morphisms in the category of schemes, and the second “Hom” =

HomRg standing for ring homomorphisms.

In the beginning we had difficulties accepting this. Here is a simple example. Let B = k[S,T ]. The points
of the algebraic variety V = A2

k defined by this coordinate ring are of the form (s, t), and V (k) = k2; remark
that points in V coincide with maximal ideals in B. It seems more intuitive to consider maximal ideals in A
rather than all prime ideals in B.

In the theory of schemes we see that X = Spec(k[S,T ]) consist of objects of three different kinds: points
corresponding to a maximal ideal in B = k[S,T ], points in X corresponding to an irreducible algebraic curve
in k2, namely ideals J, non-zero and non-maximal, and one point η in X corresponding with the zero ideal
in B. Why is this necessary?

Suppose we have a morphism of schemes Spec(A)→ Spec(B). This should correspond with a homo-
morphisms of rings A← B by ”pulling back functions”,

(Spec(A)→ Spec(B)) ←→ (A← B) :

conversely a homomorphism A← B should correspond with a morphism Spec(A)→ Spec(B). As an exam-
ple, consider the map

A = k(S,T )← k[S,T ]

induced by the inclusion map of k[S,T ] in its field of fractions; does this give a morphism Spec(A)→
Spec(B)? We see that Spec(k(S,T )) consists of one point, and this should map to a point in Spec(k[S,T ]),
indeed to η . Or consider a non-maximal prime ideal 0 6= J, e.g. J = (S); let C be the field of fractions of
B/J, and consider the natural homomorphism C← k[S,T ]. We see that Spec(C) consists of one point and
the morphism Spec(C)→ Spec(B) maps this to the point c ∈ X corresponding with the prime ideal J. We
see all prime ideals in B are necessary in order to obtain a coherent theory.

Remark that in the theory of algebraic varieties considering V = A2
k as above the “generic point of

the variety V ” was considered in the theory by Weil, but {η} is not “a variety defined over k”; however,
η : Spec(k(S,T ))→ Spec(k[S,T ]) is a morphism of schemes; we see that previous theory was incorporated
in a more general context.

As mentioned before, we discussed affine varieties, and not more general concepts (like abstract varieties);
above we defined affine schemes; more general concepts are needed in general, but for our discussion here
and a first understanding of this topic it is not of main importance.
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In fact, Grothendieck emphasized we should not discuss objects (such as a scheme), but the central concept
is the relative situation. A talk by Grothendieck usually started by writing X , a vertical arrow, and S while
saying “ Let X be a scheme over S”. Note two aspects.

First every scheme admits a (unique) morphism to Spec(Z); in case you are interested in a special
situation (geometry over C, or over Z or whatever), you inform the audience / the reader what is the base
scheme.

Second X → S and T → S give rise to

X×S T = XT → T ;

note that XT over T is an object different from X → S. In classical algebraic geometry often an object over
K and “the same” object over a field containing K are denoted by the same symbol. You will see this leads
to confusion and mistakes. In the Grothendieck theory the circle defined by Z (S2 +T 2−1) over Q is not
the same object as the circle defined by this equation say over C. In the notation above, the scheme X on the
one hand and XT on the other hand should be identified if T → S is not an isomorphism.

(3.9.1) Consider Spec(Z). This is a regular scheme (every localization is a regulars local ring) of Krull
dimension one (every chain of prime ideals has length at most one, and there is a chain of length one, e.g.:
(0) ⊂ (17).) Hence this scheme has properties analogous to those of a regular affine algebraic curve. This
is the classical concept of the analogy between rings of integers in number fields and coordinate rings of
algebraic curves as noted by Kronecker, Weil and many others. The Grothendieck scheme theory provides
a general frame work for unifying considerations.

(3.9.2) Let X → S and Y → S be schemes over a base scheme and consider

X×S Y −→ S

be their fibered product. This is a scheme over S. This notion generalizes the concept a product of varieties,
and of “intersection”; indeed if X ⊂ S and T ⊂ S then X ×S Y ⊂ S is the scheme-theoretic intersection.
Observe, that even if X and Y “are varieties” (e.g. a like and a conic in a plane), their intersection need not
be; scheme theory repairs such defects, even in very simple situations.

(3.9.3) For an algebraic variety every local rings has no nilpotent elements (a nilpotent element f ∈ A is
an element f 6= 0 such that there exists n ∈ Z>0 with f n = 0). However for the more general definition
of schemes this is not excluded (and we gain a lot). However you have to get accustomed that a regular
function on a scheme gives a “function”

f ∈ A, f 7→ f (x) ∈ κ(x), x ∈ X ,

where κ(x) =OX ,x/mX ,x is the residue class field, but the target of these functions may vary with x (consider
A = Z), and it may happen that f 6= 0 but f (x) = 0 for every x ∈ X .

(3.9.4) Here is a basic example. Let K be a field, and A = K[ε]/(ε2) (an object not present in the theory of
varieties). Observation:

every K-morphism Spec(A)→ X selects a point x ∈ X with κ(x) = K
and a tangent vector to X attached at x.
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Indeed, Spec(A) consists of one point, the image of this morphism is one point in X , and moreover we obtain
a K-algebra homomorphism

A = K[ε]← OX ,x, hence K← κ(x)← K,

and a K-linear map
ε·A = K·ε ←m/m2←m, m=mX ,x.

In classical deformation theory, e.g. see [47] such situations were studied, however Spec(K[ε]/(ε2)) “did
not exist”, and difficult description were needed. In the Grothendieck scheme theory they find a natural
surrounding for describing such descriptions.

(3.9.5) Instead of “a family of varieties over a base” we consider a scheme over a scheme. If you want to be
convinced of the elegance of this formulation compare the essence of the paper [51] and the definition of the
Néron minimal model given there, and scheme theoretic definition, e.g. see [37], 1.1, and see discussions in
[61].

(3.9.6) Consider the example as in 3.8.4: with A = K[T ]/(T p−a) and p
√

a 6∈ K as above. The ideal (T p−
a)·K[T ] ⊂ K[T ] is a prime ideal. The scheme X = Spec(K[T ]/(T p− a)) does exist, the ring A is a field,
and this scheme consists of one point; however there is no K-morphism Spec(K)→ X (in classical language
”this point is not rational over K”). For any extension field K ⊂ L containing p

√
a the ring

A⊗K L ∼= L[ε]/(ε p);

we see that
X×Spec(K) Spec(L)

is a one-point scheme with nilpotents in its structure sheaf, but these nilpotents only “show up” after an
appropriate field extension. An object like this X was not considered in the theory of algebraic varieties.

(3.10) Schemes with nilpotents in the structure sheaf can appear in a natural way. Before the introduction
of schemes this was sometimes mysterious. We mention one example. In constructing Picard varieties we
were accustomed that the dimension of Pic(V ) should be equal to H1(V,OV ) (in whatever disguise). And
in general this is true for algebraic curves and for abelian varieties.

However in 1955 Igusa constructed an example of an algebraic surface V over a field K in positive charac-
teristic with

dimK
(
H1(V,OV )

)
> dim(Pic(V )) ,

[46]. The construction is easy: consider an algebraically closed field k of characteristic two; take two elliptic
curves E1 and E2 over k such that E2 has a k-point of order two. (An elliptic curve has a point of order p is
called an “ordinary elliptic curve”; such point of order two is unique if exits.). say a ∈ E2(k) has order two;
define

ι : E1×E2 −→ E1×E2, ι(x,y) = (−x,y+a);

clearly ι is an involution; define V := (E1×E2)/{id, ι}; it can be shown the Picard variety of V does exist,
and it has dimension one; however dimk(H1(V,OV )) = 2. More precisely:
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(i) There exists an open subgroup scheme Picτ(V ) of the Picard scheme Pic(V ) such that the quotient
Pic(V )/Picτ(V ) is a torsion free constant group scheme over k.

(ii) We have a commutative diagram

0 //Pic0(V )red //
_�

��

Picτ(V ) //

=

��

E1[2] //

����

0

0 //Pic0(V ) //Picτ(V ) // E1[2]et // 0

with exact rows, where Pic0(V ) is the the neutral of the Picard scheme Pic(V ), Pic0(V )red is
Pic0(V ) with reduced structure sheaf, E1[2] is the subgroup scheme of 2-torsion points of E1, and
E1[2]et is the maximal étale quotient of E1[2]. The above commutative diagram induces an isomor-
phism E1[2]0

∼−→Pic0(V )/Pic0(V )red, where E1[2]0 is the neutral component of E[2]. The latter is
local and non-reduced, of rank 2 (respective 4) if E1 is ordinary (respective not ordinary).

(iii) Let f : V → E3 := E2/{0,a} be the map induced by the second projection pr2 : E1×E2→ E2. The
morphism f ∗ : Pic0(E3)→Pic0(V ) induces an isomorphism Pic0(E3)

∼−→Pic0(V )red.

(iv) Let V1 → Spec(R) be the universal first order equi-characteristic deformation of V , where R is an
Artinian equicharacteristic local ring with residue field k. Then Picτ(V1/R) is not flat over R.

The example (iv) of a non-flat Picτ is due to Mumford; see footnote (19) on [22], page 648 a discussion
and more consequences.

It was a puzzling situation. Later we found that group schemes in characteristic zero are reduced (contain no
nilpotents in their structure sheaf), but in positive characteristic this is not true; moreover using the method
explained above about finding the tangent space a simple calculation shows that

the tangent space tQ,0 at 0 to the Picard scheme Q = Pic(V )

is canonically isomorphic with
tQ,0 ∼= H1(V,OV ).

We indicate a proof. Consider A = K[ε]/(ε2) and the exact sequence

0→ K ∼= I = ε·A−→ A−→ A/I = K→ 0.

Tensoring with OV and taking units we derive

1→ (1+ I·OV )
× −→ (A⊗OV )

∗ −→ O∗V → 1.

Using ε2 = 0 we obtain
(OV )

+ ∼−→ (1+ I·OV )
×, f 7→ 1+ ε· f .

Also we request that global functions on V are constant. Moreover

Ker
(
H1(V,(A⊗OV )

∗)→ H1(V,O∗V )
)
= tQ,0;
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here we use the observation in 3.9.4 and the definition of the Picard functor. We obtain the exact sequences

1→ Γ(V,(1+ I·OV )
×))−→ Γ(V,(A⊗OV )

∗)−→ Γ(V,O∗V ) = K∗→ 1,

and
0→ H1(V,OV )−→ H1(V,(A⊗OV )

∗)−→ H1(V,O∗V ).

Hence we prove the statement:

H1(V,OV )
∼−→ tQ,0 = Ker

(
H1(V,(A⊗OV )

∗)→ H1(V,O∗V )
)
.

Note that we even did not assume Q exists, just considerations on the Picard functor.

The explanation of Igusa’s example is that although the Picard variety P of V exists (in the classical theory
of varieties), its Picard scheme Q (in the theory of schemes) is different, and the ideal of nilpotent elements
in the structure sheaf of Q defines P = Qred ⊂ Q.

(3.11) Hidden nilpotent elements. Sometimes nilpotents do not show up over a small field (as we saw in
3.9.6); hence there is confusion possible in the theory of algebraic varieties, but in the context of schemes
these phenomena are easily explained.

We know the phenomenon that a zero set can be irreducible, however becomes reducible after an ex-
tension of the base field; e.g. X2 +Y 2 ∈ R[X ,Y ] defines an irreducible zero-set, which however becomes
reducible over C as X2 +Y 2 = (X +

√
−1 ·Y )(X−

√
−1 ·Y ) ∈R[X ,Y ]. Here is an analogous, natural exam-

ple for nilpotents.
Example. Consider K = F2(t), a transcendental extension of F2. Let E ⊂ P2

K be given as

E = Z (Y 2Z +XY Z +X3 + tZ3).

This is a non-singular curve of genus one. As is usual, we take 0 = [x = 0,y = 1,z = 0] and we obtain an
elliptic curve. As a group scheme we can consider E[2], the 2-torsion on this abelian variety of dimension
one. It is the scheme-theoretic kernel of the homomorphism ×2 : E → E. We see that E[2] = µ ∪T , where
µ ∼= Spec(K[τ]/τ2), and where T ⊂ E is a reduced subscheme (reduced means its structure sheaf has no
nilpotents), T ∼= Spec(K[Y ]/(Y 2 + t); however T ⊗K[

√
t]∼= Spec(K[

√
t][Y ]/((Y +

√
t)2): after base change

nilpotents show up.
The previous example works for every prime number; we just took p = 2 in order to have easier equa-

tions.

(3.12) Varieties in the language of schemes. Sometimes we want to go back and forth between notions
in classical algebraic geometry and the language of schemes. Let K be a base field. A variety V over K is
an algebraic scheme over K (i.e. of finite type) that is geometrically irreducible and geometrically reduced;
this last condition means that for every field extension K ⊂ L we have that V ⊗L := V ×Spec(K) Spec(L) is
irreducible and has no nilpotents in its structure sheaf.

For example, if K $ K′ is a finite extension, then Spec(K′) is not a K−variety.
For a further discussion see 3.14.
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(3.13) Recall that we consider only commutative rings as base-rings. We say that A is a Λ-algebra if A and Λ

are (commutative) rings and a ring homomorphism (the structure map) Λ→ A is given (consider the relative
situation, not the absolute situation). Note that any ring is a Z-algebra.

We say A is a Λ algebra of finite type if there exists n ∈ Z≥0 and a surjective Λ-algebra homomorphism

Λ[T1, · · · ,Tn] � A.

A Λ-algebra that is finitely generated as a Λ-module is of finite type; however there are many Λ-algebras
of finite type not finitely generated as a Λ-module; e.g. Λ[T ] is of finite type but not finitely generated as a
Λ-module.

Note that for any affine algebraic variety V with affine coordinate ring K → A we know that A is a
K-algebra is of finite type.

Suppose we have a variety over Q and we want to consider a possibility of “reduction modulo p” for a given
prime number. We like to develop this method, so effective in number theory, also in algebraic geometry.
In history we have seen many struggles to lay foundations for this; often with beautiful results, described in
complicated methods.

Note that the ring

R = (Zr (p))−1Z= {a
b
| a, b ∈ Z, b not divisible by p},

the ring of fractions with denominator not divisible by p, is not a Z-algebra of finite type (left as exercise
to the reader). However this is a natural choice for a “base-ring” doing geometry in mixed characteristic.
Hence we include such algebras in our considerations.

Let us go back to classical geometry. In the beautiful paper [47] we find a long and strong description of
deformation theory. In retrospect we see that descriptions would have been more transparent if more general
base schemes would have been allowed (as Grothendieck proposed, not only in the algebraic category, but
also in the complex analytic theory). E.g. In the definition of “the number of moduli”, [47], Definition 11.1
the notions ”effectively parametrized”, Def. 6.2 on page 366, and “complete families”, Def. 1.7 on paged
337 are used. Only first-order deformations were considered, and families are given over a global base.
We see the way this can be incorporated and generalized in modern theory were arbitrary base schemes are
allowed, and where “(pro-)representable functors” lead the way to transparent descriptions.

Many more examples can be given were scheme theory replaces classical complicated descriptions by ele-
gant and powerful methods.

(3.14) We discussed some examples of schemes. We see how shortcomings of the theory of varieties are
repaired. Sometimes we want to use the word “(algebraic) variety” and compare that concept with the
corresponding object in the theory of schemes. Here is comparison. Consider a field K, and

• varieties defined over K (i.e. given as zeros of polynomials and chart-changes with coefficients in K)
that are absolutely irreducible over K, and regular maps as their morphism;

• schemes over K, of finite type, and absolutely integral and irreducible, and their morphisms.
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These categories are equivalent; however be careful, the set of “points” in the objects compared are different
in general. Already in the case of an affine scheme Spec(R), where R is a finitely generated integral domain
over K such that R⊗K Kalg is integral: (a) points of the corresponding variety are K-linear ring homomor-
phisms R→Ω, where Ω is an algebraically closed field containing K; (b) points of Spec(R) are prime ideals
of R, and for any K-algebra B, and B-valued points of Spec(R) are K-linear ring homomorphisms R→ B.

Some examples of schemes not considered in this comparison:
(i) Suppose K $ L is a finite algebraic extension; in this case X = Spec(L) is of finite type over Spec(K);
however X is not absolutely integral; e.g. if K/L is separable,

X×Spec(K) SpecK

is reducible, and in case K/L is purely inseparable this product is non-reduced. These schemes should not
be considered as “varieties”.
(ii) Suppose X = Spec(K((t))). In this case X is not of finite type over K.
(iii) Suppose X = Spec(K[ε]/(ε2)). In this case X is non-reduced.

These three examples each play an important role in modern algebraic geometry (even in considerations
over a base-field).

(3.15) We describe an example of a non-reduced moduli scheme of threefolds due to Mumford. Details
can be found in [50]. We begin by describing a particular type of smooth projective curves in P3 over an
algebraically closed base field k of characteristic 0. These smooth space curves C are characterized by the
following conditions:

(1) C has degree 14 and genus 24, and lies on a smooth cubic surface S in P3. Note that S is the unique
smooth cubic, for if C lies on another smooth cubic surface S′, then deg(S ·C′) = 9 < 14 = deg(C).

(2) There exists a line E (i.e. a smooth P1 of degree 1) on S such that OS(C) ∼= OS(H + 2E). Here H
stands for a hyperplane section on the cubic surface S. It is well known that there are exactly 27 lines
on S, and the self-intersection number of each line on S is −1.

The dimensions of some coherent cohomology groups are given below. They can be computed using suitable
exact sequences.

(3) deg(C ·C)S = 60

(4) dim H0(S,OS(C)) = 38; Hi(S,OS(C)) = (0) for i = 1,2.

(5) dim H0(S,NC/S) = 37, and H1(S,NC/S) = (0), where NC/S) is the normal bundle of C ↪→ S.

(6) dim H0(C,NC/P3) = 57, and dim H1(C,NC/P3) = 1 where NC/P3 is the normal bundle of C ↪→ P3.

(7) dimH0(C,NF ↪→P3⊗OF OC) = 20, and dimH1(C,NF ↪→P3⊗OF OC) = 1, where NF ↪→P3 is the normal
bundle of F ↪→ P3.

To show the existence of curves satisfying conditions, let E be one of the 27 lines on S, and consider the
short exact sequences

0→ OS(4H +E)→ OF(4H +2E)→ OE(2)→ 0
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and
0→ OS(4H)→ OF(4H +E)→ OE(3)→ 0.

From the associated long exact sequences one gets

Hi(OS(4H)) = Hi(OS(4H +E) = Hi(OS(4H +2E) = (0) for i = 1,2,

and from Riemann-Roch for surfaces one gets

dimH0(OS(4H +2E)) = 38.

Because Pic0(S) = (0), the collection of all curves on a fixed smooth cubic surface satisfying conditions
(1) and (2) form a 37-dimensional family. Since the family of all smooth cubics in P3 is 19-dimensional,
one sees that the collection of all curves in P3 satisfying (1) and (2) is parametrized by a 56-dimensional
variety, classically called a Chow variety.

On the other hand, the cohomology group H0(C,NC/P3) parametrizes first order deformations of C.
The fact that its dimension (57) is strictly bigger than the dimension of the Chow variety (56) says that
the question on the completeness of the characteristic map for space curves has a negative answer. In the
language of schemes, the statement corresponding Hilbert scheme H ilb is non-reduced.

For a smooth space curve C in P3 satisfying conditions (1) and (2) above, consider the blowing-up
blC : XC → P3 of C ↪→ P3. Mumford remarked in [50], citing the 1963 paper by Kodaira “On stability of
compact submanifolds of complex manifolds” in Amer. J. Math. 85, pp. 79–94, that the local moduli space
of XC is isomorphic to the formal completion of the Hilbert scheme H ilb at the point [C] corresponding to
C, consequently that local moduli space is also non-reduced. To spell out the statement explicitly:

For every Artinian local ring R with residue field k, and for every flat morphism X→ Spec(R)
whose closed fiber is XC, there exists a closed subscheme C ⊂ P3

R which is flat over R and an
R-isomorphism from X to the blow-up of P3

R along C.

Let M be the local moduli problem which assigns to every Artinian local ring R with residue field k the set
of all equivalence classes of morphisms f : X→ P3

R over R such that X is flat over R and the closed fiber
of f is blC, where two such maps f1 and f2 over R are declared to be equivalent if and only if there is an
isomorphism α : X1

∼−→ X2 such that f2 ◦α = f1. The above statment implies that the local moduli problem
M is represented by the formal completion of the Hilbert scheme H ilb at the point [C] ∈H ilb(k).

(3.16) Historical remarks. The theory of schemes was first announced in 1958 in [2], followed by a big
bang, FGA exposé 182 in May 1959. Besides the definition and basic properties of schemes, the latter con-
tains: finiteness theorems of proper morphisms, relation between formal and algebraic geometry (GFGA),
deformation theory of schemes, definition of finite étale covers and the étale fundamental group of a scheme,
and the computation of the prime-to-p part of étale fundamental group of a complete irreducible smooth al-
gebraic curve.

For an interesting discussion (between Grothendieck and Mumford) about the use of the word “variety”
versus scheme, see [22], pp. 730–733.

§4. The algebraic fundamental group.
This is an example of clear and deep thoughts of Grothendieck: well-known classical ideas freed from
their initial restrictions give a theory, of great beauty, but also, as we will see, with many clean and direct
applications. Here is a mental exercise for the reader.
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On the one hand you know Galois theory: classify finite, separable extensions of fields by group theory
(where the action of the Galois group interchanges zeros of an equation). This is algebra and a field extension
K ⊂ L does not look like a geometric object.

On the other hand you know the theory of the topological fundamental group: for a topological space
S you want to consider “all” (“unramified”) coverings T → S, and classify them by group theory (where
the action of the fundamental group interchanges sheets of the universal covering). Do you feel these two
notions are two aspects of one and the same theory? and what is that theory?

What we now call the Grothendieck fundmental group, or the algebraic fundamental group gives this
uniform approach. Start by thinking instead of a finite, separable extension of fields

K ↪→ L as a geometric “covering”: Spec(K)← Spec(L).

Once you realize this (and if you have the daring insight of Grothendieck) you define unramified finite cov-
ering of schemes (no further restrictions), and you prove that these are all classified by a (pro-finite) group.
Note that this theory enables you to study examples like Spec(C(t)), or Spec(Z[1/p]), or Spec(Fp[T ]) and
so on. Moreover, as in topology a continuous map (a morphism) between topological spaces (between
schemes) gives a covariant map on the fundamental groups involved. Incredible applications, e.g. the spe-
cialization of the fundamental group.
One example: for any field K, the Grothendieck fundamental group is just the Galois group Gal(Ksep/K).

Another example: for a complete algebraic variety V over C the Grothendieck fundamental group is
the pro-finite completion of the topological fundamental group of V (C); this “comparison” enables us to
compute this group by topological methods. One of the results along this line proved by Grothendieck
is the computation of the (prime to p part of) the fundamental group of an algebraic curve in positive
characteristic SGA1 exp. X Cor. 3.10: lift coverings of the curve to characteristic zero, classify these by
topological methods, and use the specialization of the fundamental group. We have a rich, powerful and
beautiful technique at our disposal.
This theory was precisely described and further developed in SGA1. Grothendieck was very fond of this
theory as he wrote to Serre. We have learned from Grothendieck, especially in this case, that going to the
core of the problem, and deleting all unnecessary assumptions you can produce (in capable hands) such a
beautiful revolution.
We describe one detail of this theory. Suppose you have a scheme X over a field K. Consider the fundamental
group π1(X) (apologies: we should include base points in our notation, but we keep things short). This has
two aspects:

the geometric part, π1(X), where X = X⊗K,
the arithmetic part π1(Spec(K)) = Gal(Ksep/K)

and they fit into an exact sequence

1→ π1(X)→ π1(X)→ π1(Spec(K))→ 1 (g-a)

see SGA1 exp. IX Thm. 6.1. We will see how this mixture of arithmetic and geometry leads to deep appli-
cations.

§5. Descent theory and Grothendieck topologies
The theory of descent appeared in FGA exp. 190, the first of the series Technique de descent et théoremes
d’existence en géométrie algébrique in FGA, in December 1959. The predecessor of Grothendieck’s general
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descent theory include Hilbert’s theorem 90, Weil’s method of “descent of base fields” for separable field
extensions, extended by Cartier to purely inseparable extensions of hight one (extensions L/K with Lp ⊆K).
The notion of Grothendieck topology is closely related to the theory of descent.

References: exp. VIII and IX of SGA 1 for descent; exp. IV of SGA 3 for Grothendieck topology; [34],
[35] and [36] for algebraic stacks.

(5.1) Grothendieck topology Grothendieck had the insight that in the definition of topoloygy, one can
replace open immersions by maps with suitable properties in a categorical setting, and arive at a new notion
which captures the essence of the concept. We will illustrate the main idea using the category of schemes.

A Grothendieck pretopology on the category of scheme is an assignment which attaches to scheme X , a
collection Cov′(X) of families of morphisms , satisfying the following properties (C0)–(C2). (Elements of
Cov(X) are called covers of X for the Grothendieck pretopology.) A pretopology is a Grothendieck topology
if the saturation property (C3) below is satisfied. The property (C3′) is a consequence of (C2) and (C3).

(C0) For every isomorphism Y ∼−→ X , the singleton family {Y ∼−→ X} is in Cov(X).

(C1) A pull-back of a cover is a cover: if {XiX | i ∈ I} is in Cov′(X), then its base change {Xi×X Z →
midi ∈ I} is in Cov(X) for each f : Z→ X .

(C2) A cover of a cover is a cover: if { fi : XiX | i ∈ I} is in Cov(X) and and {gi j : Xi j → Xi | j ∈ Ji} is in
Cov(Xi) for each i ∈ I, then the family {gi j ◦ fi : Xi j→ X | i ∈ I, j ∈ Ji} is in Cov(X).

(C3) A family refined by a cover is a cover: Let { f j : Yj → X | j ∈ J} be a family of morphisms and let
gi : {Xi → X | i ∈ I} be a family in Cov(X). If for every i ∈ I, there exists an element j ∈ J and a
morphism h ji : Xi→ Yj such that f j = h ji ◦gi, then the family { f j : Yj→ X | j ∈ J} is in Cov(X).

(C3′) Suppose {Yj→ X | j ∈ J} is a family of morphisms and {Xi→ X | i ∈ I} is a family in Cov(X). If the
family {Yj×X Xi→ Xi | j ∈ J} is in Cov(Xi) for each i ∈ I, then {Yj→ X | j ∈ J} ∈ Cov(X).

Remark. (i) The notion of a Grothendieck pretopology is analogous to the notion of a basis of open sets of
a topological space.
(ii) There is a saturation procedure, similar to using a basis of open sets to define a topology, which slightly
enhances a Grothendieck pretopology to a Grothendieck topology, so that every cover in the newly produced
Grothendieck topology is refined by a cover in the pretopology.

Examples.
(0) ZARISKI TOPOLOGY: Define a pretopology by assigning to any scheme X the collection of all families
{Ui ↪→ X | i ∈ I}, where each Ui ↪→ X is an affine open subscheme of X and

⋃
i∈I Ui = X . Every family

{Vj ↪→ X | j ∈ J} such that Vj is a Zariski open subset of X for each j and
⋃

j∈J Vj = X is a cover of X for
the associated Grothendieck topology.

(2) ÉTALE TOPOLOGY: This is the Grothendieck topology generated by the pretopology which assigns to
each scheme X the collection of all families {Xi→ X | i ∈ I} where each morphism Xi→ X is étale and the
map

⊔
i∈I Xi −→ X is surjective. Here the symbol “

⊔
” means “disjoint union”.
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(2) FLAT FPQC TOPOLOGY: Define a Grothendieck pretopology by taking Cov(X) to be the set of all
families of morphism obtained in the following manner. Take a Zariski open cover {Ui : i ∈ I} of X where
each Ui is an affine open subscheme of X . For each i ∈ I, let gi : Xi →Ui be an faithfully flat morphism
morphism between affine schemes; let fi : Xi→ X be the composition of gi with the inclusion map Ui ↪→ X .
Declare the family { fi : Xi → X | i ∈ I} to be in Cov(X). The associated Grothendieck topology is called
the fpqc topology. For every faithfully flat quasi-compact morphism f : Y → X , the singleton family { f} is
a cover of X for the fpqc topology. Note that fpqc is the achronym for “fidèlement plate et quasi-compact”
(faithfully flat and quasi-compact).

If in the above we replace the condition that each gi is a faithfuly flat morphism between affine schemes
by requiring that gi is a faithfuly flat and quasi-finite morphism between affine schemes, the resulting topol-
ogy is called the fppf topolgy (for “fidèlement plat et de présentation finie”).

The fpqc topology is finer than the étale topology, which in turn is finer than the Zariski topology:

(fpqc) ≥ (fppf) (et) ≥ (Zar)

(5.2) Descent. There are several things (among others) we can do using a topology:

(a) Verify a property (say about either a manifold or a map between manifolds) using local charts, if that
property is local.

(b) Produce a map between two manifolds or a vector bundle on a manifold, by gluing, i.e. first produce
maps or vector bundles using local charts, then verify compatibility condition for different charts.

(c) Produce a manifold by gluing smaller open pieces.

(d) Define global invariants of manifolds (such as cohomology groups and homotopy groups), and use
them to study geometric properties of manifolds.

For the étale topology, the family of étale covers of a scheme X is the set of all étale surjective morphisms
Y → X . For the flat (fpqc) topology, the family fpqc covers is the set of all faithfully flat affine morphisms
Y → X . The theory of descent is mostly about (a)–(c).

Main ideas of descent.
(a) PROPERTIES OF LOCAL NATURE. Many important properties of morphisms of schemes are local with
respect to suitable Grothendieck topologies, for the target and/or for the source. For instance suppose
{Xi→ X | i ∈ I} and {g j : Yj→ Y | j ∈ J} are coverings for the fpqc topology. Then a morphism f : Y → X
is proper (respectively flat, respectively smooth, respective étale) if and only if f ×X Xi : Y ×X Xi→ Xi is for
each i ∈ I: being proper (respectively flat, respectively smooth, respective étale) is local for the source in the
fpqc topology, therefor also in the étale and Zariski topology. Similarly being flat is local for the source in
the fpqc topology (and the étale and the Zariski topology): f is flat if and only if f ◦g j is flat for each j ∈ J.
However being smooth is local for the source in the étale topology and the Zariski topology, but not for the
fpqc topology.

Localizing with respect to a suitable Grothendieck topology is a basic tool for studying properties which
are local for this topology, and is often used silently. For instance results in textbooks on algebraic geometry
such as [43] are often stated for algebraic varieties over algebraically closed fields. The base change/descent
method allows one to immediately draw conclusions for varieties over arbitray base fields from the case of
algebraically closed base fields.
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(b) DESCENT OF MORPHISMS OR COHERENT SHEAVES. Suppose that X → S and Y → S are morphisms
of schemes, and {Si→ S | i ∈ I} is a cover of S for the fpqc topology. Let Si j := Si×S S j for all i, j ∈ I, and
let pr1 : Si j→ Si, pr2 : Si j→ S j be the two projections. We have a short exact sequence

MorS(X ,Y ) // ⊔
i∈I MorSi(X×SSi,Y×SSi)

pr∗1 //

pr∗2
//
⊔

i, j∈I MorSi j(X×SSi j,Y×SSi j)

of sets. means “disjoint union”. In particular, if we have Si-morphisms fi : X×SSi,Y×SSi for i ∈ I such that
the pull-backs of fi and f j coincide as morphisms from X×SSi j to Y×SSi j for all i, j ∈ I, then the fi come
from a unique morphism f : X → Y : they glue over the flat cover {Si j → S} and descend uniquely to an
S-morphism from X to Y .

In the case when S = Spec(K) and the of S is Spec(L)→ Spec(K) for a finite Galois extension L/K
of fields, the above descent of morphism says something familiar: suppose X ,Y are schemes over K and if
fL : X×Spec K Spec L→X×Spec K Spec L is an L-morphism which is fixed under all conjugations by elements
the Galois group Gal(L/K), then fL is the base change to L of a unique K-morphism f : X → Y .

The fpqc descent for coherent sheaves is similar.
(c) DESCENT OF SCHEMES. Let S be a scheme, let {Ui→ S | i ∈ I} be a cover of S for the fppf topology.
Let S0 :=

⊔
i∈I Ui, and let pr0 : S0 → S be the structural morphism for S0. Let S1 := S0×S S0, let S2 :=

S0×S S0×S0. We have projections pr1,1,pr1,2 : S1→ S0 to the first and the second factor of S1; similarly we
have projections

pr2,12,pr2,23,pr2,13 : S2→ S1

and
pr2,i : S3→ S0, i = 1,2,3.

Suppose we have a morphism of schemes X → S. Let Xi := X×S Si for i = 0,1,2. The fact that X0 is the
base change of an S-scheme gives rise to a natural S1-isomoprhism α : pr∗1,2X1→ pr∗1,1X1 which satisfies the
following cocycle condition:

pr∗2,12α ◦pr∗2,32α = pr∗2,13α

as S2-morphisms from pr∗2,3X0 to pr∗2,1X0.
Define the category DescSch(S0 → S) of descent data for schemes to be the category whose objects

are pairs (X0 → S0,α : pr∗1,2X1 → pr∗1,1X1 which satisfies the above cocycle condition. A morphisms in
DescSch(S0 → S) from (X0 → S0,α) to (Y0 → S0,β ) is by definition a morphism f : X0 → Y0 such that
β ◦ pr∗1,2 f = pr∗1,2g ◦α . In the case when S is the spectrum of a field K and S0 is the spectrum of a finite
Galois extension field L of K, one recovers the Galois descent data according to Weil.

Given a descent datum (X0 → S0,α) in DescSch(S0 → S) relative to an fpqc (respective étale) cover
S0→ S, a natural question is whether it comes from a scheme X → S by base change. If so, the descended
scheme X → S is unique up to unique isomorphism, and one says that this descent datum is effective. Some
general criteria for effectiveness were discussed in SGA 1 exp. VIII.

(5.3) Descent as a method of constructing algebraic geometric objects. In the series Technique de de-
scente et théories d’existence en géométrie algébrique I–V in [5], exp. 190, 195, 212, 221, 232 and 236,
Grothendieck explained the method of descent, formal existence theorems for deformation problems, con-
struction of quotients for equivalence relations, the theory of Hilbert schemes, culminating with an existence
theorem of Picard schemes, theorem 3.1 in exp. 232:
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If f : X → S is a projective flat morphism of locally Noetherian schemes such that all geometric
fibers of f are integral, then the the Picard scheme Pic(X/S) exists.

Here Pic(X/S) is the relative Picard functor, which assigns to every morphism S′→ S the set

Pic(X/S)(S′) := H0(S′,R f 1
S′Gm),

where fS′ := f ×S S′ : X × SS′ → S′ is the base change of f by S′ → S and R f 1
S′ is the first direct image

functor of f for the fppf topology. Under the assumption that f is projective, Grothendieck first constructed
the scheme Div(X/S) as the disjoint union

⊔
Q DivQ(X/S) of effective relative Cartier divisors with a fixed

Hilbert polynomial Q(t) using the theory of Hilbert schemes. One has a natural/obvius morphism of functors
Div(X/S)−→Pic(X/S), which is relatively representable, and one obtains a descent datum on (a suitable
open subscheme of) Div(X/S) which covers Pic(X/S). The idea then is to prove that this descent datum is
effective, which produces a scheme representing the relative Picard functor Pic(X/S).

(5.4) Brauer-Severi varieties and descent. We use the Brauer-Severi variety an baby example to illustrate
the method of descent. See [60, Ch. X §6] for a concise account.

Let A be a finite dimensional central simple algebra of dimension d2 over a field K. It is a basic fact
that there exists a finite Galois extension L/K such that the central simple algebra AL := A⊗K L over L is
isomorphic to the matrix algebra Md(L). Moreover the group of L-automorphisms of Md(L) is naturally
isomorphic to PGLd(L), which acts on Md(L) through conjugation: for every element g̃ ∈ GLd(L), M 7→
g̃−1 ·M · g̃ gives an automorphism Ad(g) of Md(L), where g is the image in PGLd(L) of g̃. We pick an
isomorphism ξ : Md(L)

∼−→ AL, and obtain for each σ ∈ Gal(L/K) an element gσ ∈ PGL(L) determined by
σ ξ = ξ ◦Ad(gσ ). An easy calculation shows that the function σ 7→ gσ satisfies the cocycle relation

gσ ·τ = gσ · σgτ ∀σ ,τ ∈ Gal(L/K).

If instead of of ξ we picked another isomorphism ξ ′ = ξ ◦Ad(h) with h ∈ PGL(L), then the 1-cocyle
attached to ξ ′ is

σ 7→ h−1 ·gσ · σh, σ ∈ Gal(L/K),

which is cohomologous to the 1-cocycle σ 7→ gσ . We conclude that every d2-dimensional central simple
algebra gives rise to a well-defined class [A] in the non-abelian cohomology group H1(Gal(K/K),GLd(K)).

The Bauer-Severi variety attached to a central simple algebra A over K can be constructed in two ways.

• (by descent) Choose a cocyle (gσ )σ∈Gal(L/K) representing the cohomlogy class [A] for some finite
Galois extension L/K. Each gσ ∈ PGLd(L) defines an automorphism of Pd−1 over L, and the 1-
cocycle (gσ ) defines an (L/K)-decent datum on Pd−1 over L. Such a descent datum is effective:
it comes from a variety XA over K, well-defined up to unique isomorphism. Note that the Galois
descent above is a special case of fpqc descent via the natural isomorphism Gal(L/K)×Spec(L) ∼−→
Spec(L⊗K L).

• (direct construction) Define XA to be the closed subvariety of a suitable Grassmannian variety attached
to the vector space underlying A, so that for every commutative K-algebra R, XA(R) is naturally
identified with the set of all surjective R-linear maps of modules q : A⊗K R � Q such that Q is a
projective R-module of rank d(d− 1) and Ker(q) is a right ideal of A×K R. The above condition is
easily expressed as a system of equations in the Plüker coordinates of the Grassmannian variety.
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There is a right principal homogenous space TA for PGLd over K attached to the cohomology class [A] ∈
H1(Gal(K/K),PGLd(K)), such that the contraction product TA×PGLd Pd−1 is naturally isomorphic to XA.
The variety TA can be constructed by descent, and can also be written down explicitly by equations. The
scheme TA is defined so that TA(R) is naturally identified with the set of all R-linear isomorphisms Md(R)

∼−→
A⊗K R of algebras, for every commmutative K-algebra R. To get explicit equations, choose a K-basis
(Ni, j)1≤i, j≤n of A, and we have structural constants

(
ckl;i j,ab

)
1≤k,l,i, j,a,b≤d of A given by

Ni, j ·Na,b = ∑
1≤k,l≤d

ckl;i j,ab Nk,l.

Let (Ei, j)1≤i, j≤d be the standard basis of Md , and write ∑1≤i, j≤d xi j;kl Ni j for the image of Ek,l under a
“varying” isomorphism Md(R)→ A⊗K R. Then in the variables

(
xi j;kl

)
1≤i, j,k,l , the equations for TA is

∑
1≤i, j,a,b≤d

ckl;i j;ab xi j;rs · xab;uv = δsu · xkl;rv ∀r,s,u,v = 1, . . . ,d.

It would be quite unmanageable to try to understand TA from the above messy-looking system of equations.
Localization in the étale topology tells us that this system of equations defines a right principal homogeneous
space over K under PGLd .

(5.5) The method of descent, including quotient using Mumford’s geometric invariant theory, have become
a basic tool in algebraic geometry. Grothendieck’s approach has been extended in two related directions:
algebraic spaces due to Artin, and algebraic stacks due to Deligne–Mumford and Artin. These notions fits
into an ascending sequence

schemes ≤ algebraic spaces ≤ Deligne–Mumford stacks ≤ Artin stacks

in their level of generality; the representability condition is weakened in each step, while important geomet-
ric structure are still preserved.

(5.5.1) As an illustration of their usefulness, below are two statements for the existence of Picard schemes,
both due to Artin. in [36, p. 186–187] and [35, Thm 7.3, p. 67].

(i) Let f : X → S be a proper flat morphism of algebraic spaces. The relative Picard stack PIC (X/S)
is an Artin stack. Here the relative Picard functor PIC (X/S) assigns to every morphism S′→ S the
groupoid category of all invertible OX×SS′-modules on X×S S′.

(ii) If moreover f is cohomologically flat, i.e. the formation of f∗OX commutes with arbitrary base
change, then the relative Picard functor Pic(X/S) is represented by an algebraic space locally of
finite presentation over S.

(5.5.2) Here is an easy example of Deligne–Mumford stack that appears “in nature”; see [49, §3] for more
information. Let C be a connected smooth projective algebraic curve over C of genus g ≥ 2. It is known
that there exists a discrete cocompact subgroup Γ of PSL2(R)0 such that C(C) is isomorphic to Γ\H, where
H is the upper Let

Comm(Γ) =:
{

γ ∈ PSL2(R)0 | γ ·Γ · γ−1∩Γ has finite index in Γ and in γ ·Γ · γ−1}
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For “most curves of genus g”, Γ is of finite index in Comm(Γ). The stack quotient of H by Comm(Γ) is a
“stacky curve” Y, which comes with a morphism C→ Y . This stacky curve Y, called the core of Y in [49],
has the property that every algebraic correspondence C← D→ C′ factors through Y. One can say that Y
“controls” all algebraic correspondences of Y .

§6. Etale cohomology
(6.1) According to [19] the exposition [59], where Serre introduced the notion of locally isotrivial alge-
braic fibrations (those which Zariski locally becomes trivial after passing to a finite étale cover), inspired
Grothendieck to define the notion of étale topology. In [2, p. 103–104], Grothendieck wrote

. . . , it seems clear now that the Weil cohomology has to be defined by a completely different
approach. Such an approach was recently suggested to me by the connections between sheaf-
theoretic cohomology and cohomology of Galois groups on the one hand, and the classification
of unramified coverings of varieties on the other (as explained quite unsystematically in Serre’s
tentative Mexico paper), and by Serre’s idea that a ‘reasonable’ algebraic principal fiber space
with structure group G, defined on a variety V , if it is not locally trivial, should become locally
trivial on some covering of V unramified over a given point of V . This has been the starting
point of a definition of the Weil cohomology (involving ‘spatial’ and Galois cohomology),
which seems to be the right one, and which gives clear suggestion how Weil’s conjecture may
be attacked by the machinery of Homological Algebra.

Grothendieck was optimistic that because the étale topology gives the “correct” Weil cohomology for H1, it
would also give the “correct” Weil cohomology for the higher Hi’s. In the spring 1962 Harvard seminar [33],
Artin gave a precise definition of the étale topology, computed the étale cohomology of constructible torsion
sheaves on algebraic curves based on Tsen’s theorem, and also the étale cohomology of algebraic surfaces
fibered by curves. Then between September 1962 and March 1963, Artin and Grothendieck established the
basic theorems of étale cohomology with torsion coefficients. The resulting `-adic étale cohomology has
since become a basic tools in algebraic geometry; its basic properties are documented in SGA4, SGA4 1

2 and
SGA5. We refer to the delicious article [19] for a nuanced overview and a excellent guide to the literature.

(6.2) Why does the étale the topology produces a “correct Weil cohomology”? This is a question many
students and non-experts may have. As indicated in [2], the étale cohomology fuses the cohomology of
sheaves and also the cohomology of profinite groups. Given a smooth algebraic variety X , one can try to
produce successive fibrations Ui.0 →Ui,1 → ·· · →Ui,d , d = dim(X), so that each arrow is a “fibration by
smooth open curves”, and the Ui’s form a basis of open neighborhoods of X , broadly interpreted. Suppose
we know the etale cohomology of curves, then one can hope to understand the etale cohomology of the Ui’s
by Leray spectral sequence, and eventually get to the cohomology of X .

From complex analysis, we know that for every smooth open algebraic curve X over C (i.e. the com-
plement of finitely many points of an irreducible complete smooth algebraic curve over C), the punctured
Riemann surface X(C) is a uniformized by a Fuchsian subgroup Γ⊂ PSL2(R)0: X(C)∼= Γ\H. In particular
X(C) is a K(Γ,1): its higher homotopy groups πi(X(C)) = (0) for all i≥ 2. We know that the cohomology
groups of K(Γ,1) are the cohomologies of the group Γ: Hi(X(C),Z/nZ) ∼= Hi(Γ,Z/nZ). After some fid-
dling one sees that for any positive integer n there exists a normal subgroup ∆0 ⊂ Γ of finite index in Γ such
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that
Hi(X(C),Z/nZ)∼= Hi(Γ,Z/nZ) ∼−→ Hi((Γ/∆)ab,Z/nZ)

for all normal subgroups ∆ of Γ of finite index which are contained in ∆0.
What about higher dimensions? In algebraic topology we know that from the homotopy exact sequence

that a fibration over a K(Γ1,1) with fiber a K(Γ2,1) is again a K(π,1). So for a good system of fibrations
Ui.0 →Ui,1 → ··· →Ui,d by curves, it is not too unreasonable to expect that the “limit” of all finite etale
coverings of Ui,0 is in some sense “acyclic for torsion coefficients”.

(6.3) We illustrate the étale cohomology in an example. The Diophantine equation involved was studied by
Gauss. It “is” an elliptic curve over Q with (potential) complex multiplication by Gaussian integers, and has
good reduction outside of 2. It is also the modular curve X0(32), which classified isogenies between elliptic
curves whose kernel are cyclic of order 32.

(6.3.1) Below is the last entry in Gauss’s mathematical diary, July 7, 1814.

A most important observation made by induction which connects the theory of biquadratic
residues most elegantly with the lemniscatic functions. Suppose, if a+ bi is a prime number,
a−1+bi divisible by 2+2i, then the number of all solutions of the congruence

1 = x2 + y2 + x2y2 (mod a+bi)

including x = ∞,y =±i,x =±i,y = ∞, is = (a−1)2 +b2.

For any field K of characteristic different from 2, the equation x2+y2+x2y2−1 = 0 defines a smooth affine
curve Eaff,K over K. Let EK be the complete smooth model of Eaff,K . It turns out that the genus of EK is
equal to 1. The complement EK rEaff,K is the disjoint union of two copies of Spec(K[X ]/(X2+1)). Clearly
Eaff,K has at least four K-rational points, with (x,y) = (0,1),(0,−1),(1,0),or (−1,0). We pick the point
P0 = (0,1) to give a group law on EK with P0 as the origin, so that EK becomes an elliptic curve over K. The
elliptic curve E := EQ over Q has good reduction over Z[1

2 ] in the sense that there exists a one-dimensional
abelian scheme EZ[1/2] over Z[1

2 ] whose generic fiber is E. For every field K of characteristic different from
2, we have EK ∼= EZ[1/2]×Spec(Z[1/2]) Spec(K).

The prediction of Gauss, first proved by Herglotz in 1921, is that if p is an odd prime number with p≡ 1
(mod 4), write p as a sum of two squares p = a2 +b2 with a odd and a−1≡ b (mod 4), then

card(EFp
(Fp)) = (1−a−

√
−1b) · (1−a+

√
−1b) = p−2a+1.

Note that the conditions that a−1≡ b (mod 4) and a is odd uniquely determine the integer a.

Define Z[
√
−1] := Z[X ]/(X2+1), Q(

√
−1) :=Q(X)/(X2+1), to the effect that “

√
−1” denotes the image

of X in either Z[X ]/(X2 + 1) or Q(X)/(X2 + 1), instead of the complex number “i”. The ring Z[
√
−1] of

Gaussian integers shows up naturally because elements of Z[
√
−1] define endomorphisms of the elliptic

curve EZ[
√
−1][1/2] (respectively EL for every field L over Z[

√
−1][1/2]); see 6.3.3 (2).
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(6.3.2) The theory `-adic étale cohomology produces, for the elliptic curve E over Q with structural mor-
phism f : E → Spec(Q), a Q`-sheaf R1 f∗Q` on Spec(Q) under the étale topology of Spec(Q). Such a
sheaf over Spec(Q)et is naturally identified with a continuous linear representation of Gal(Q/Q) on a fi-
nite dimensional Q`-vector space. For the sheaf R1 f∗Q` on Spec(Q)et, the underlying vector space is
V` = H1

et(EQ,Q`), of dimension 2 over Q`. The associated Galois representation ρ` is unramified outside
of 2 because the elliptic curve E has good reduction over Z[1/2]. We will explicitly describe this Garlois
representation representation ρ`.

For each odd prime number p different from `, the characteristic polynomial chp(T ) of ρ`(Fr−1
p ) is a

monic quadratic polynomial with integer coefficients of the form

chp(T ) = T 2−ApT + p, A ∈ Z.

Here Fr−1
p denotes an element of the decomposion group above p which induces x 7→ x1/p on the residue

field Fp. Moreover the integer Ap is determined by card(E(Fp)) := 1−Ap + p. Gauss’s prediction amounts
to a formula for Ap when p≡ 1 (mod 4).

As will be shown in 6.3.3 (2) below, Ap = 0 if p≡ 3 (mod 4). Together with Gauss’s formula of Ap for
p≡ 1 (mod 4), we arrive at the following description of the Galois representation ρ`.

(i) For every prime number ` 6= 2, the Q`-Zariski closure G` of the image of the Galois representation
ρ`. has two connected components; its neutral component G0

` is naturally isomorphic to the algebraic
torus over Q` whose R-points is (R⊗QQ(

√
−1))× for every commutative ring R over Q`.

(ii) The representation of Gal(Q/Q) corresponding to the quotient G`/G0
` is equal to the quadratic char-

acter attached to the imaginary quadratic field Q(
√
−1).

(iii) There is a one-dimensional Galois representation

ρ
′
λ

: Gal(Q/Q(
√
−1))−→ (Q(

√
−1)λ )

×

where Q(
√
−1)λ is the λ -adic completion of a place λ above `, such that

ρ`⊗Q`
Qλ
∼= IndQQ(

√
−1)

(
ρ
′
λ

)
,

the induced representation from Q(
√
−1) to Q of ρ ′

λ
. The one-dimensional Galois representation will

be made explicit in (v), following Gauss.

(iv) This one-dimensional character ρ ′
λ

of Gal
(
Q/Q(

√
−1)

)
is unramified outside ((1+

√
−1)`)Z[

√
−1].

Its conductor away from ` ρ ′
λ

is equal to (1+
√
−1)3, or (2+2

√
−1) as Gauss wrote, and the conduc-

tor away from ` of ρ` ) is 25. The two conductors are related by the conductor-discriminant formula
because ρ` is induced from ρ ′

λ
.

(v) The homomorphism ρ ′
λ

(and hence also ρ`) can be described in a manner that is independent of `:

– Let I
(
Z[
√
−1][1

2 ]
)

be the group of all fractional ideals of Q(
√
−1) which are prime to 2. Let

ψ : I
(
Z[
√
−1][1

2 ]
)
→Q(

√
−1)×,
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be the homomorphism such that ψ(℘) is the generator π℘ of℘with π℘≡ 1 (mod (1+
√
−1)3).

More explicitly,

ψ(℘) =

{
a+
√
−1b if ℘= (a+

√
−1b), a2 +b2 = p, a odd, a−1≡ b (mod 4)

−p if Z[
√
−1]/℘∼= Fp2

– For every odd prime ideal ℘⊂ Z[
√
−1] and prime to `, we have ρ ′`(Fr−1

℘ ) = ψ(℘).

We note that the above homomorphism ψ is a grossencharacter of type A0 in Weil’s terminology.
Property (iii) above implies that the Hasse-Weil zeta function ζE(s) attached to the elliptic curve E is

ζE(s) =
L(ψ,s)

ζ (s) ·ζ (s−1)

where ζ (s) is the Riemann zeta function, and L(ψ,s) is the Hecke L-function attached to ψ .

(vi) For every power pn of an odd prime number p, we have

card(EFpn (Fpn)) =

{
(1−ψ(℘)n)) · (1−ψ(℘)n) if p≡ 1 (mod 4), (p) =℘·℘
(1−
√
−pn) · (1+

√
−pn) if p≡ 3 (mod 4)

where ℘ and℘ are the two prime ideals of Z[
√
−1] above p when p≡ 1 (mod 4).

(6.3.3) SOME BASIC INFORMATION ABOUT THE ABOVE ELLIPTIC CURVE.
(1) Other forms of the same curve. For every field K of characteristic different from 2, define rational
functions

t :=
1− x2

y
, v :=

2x+2
−x+1

, u :=
t(v+2)2

4
on EK , so that

x =
v−2
v+2

, y =
1− x2

v+2
, t =

u
4(v+2)2 .

Using (x, t) and (v,u) as coordinates, we get two other affine equations for EK :

0 = t2− (1+ x2)(1− x2)

and
0 = u2− v(v2 +4)

The point P0 is (x, t) = (1,0) in the (x, t)-coordinates, and is the “point at ∞” for the Weierstrass equation in
(u,v). A non-zero holomorphic differential ω on E is given below in three coordinate systems:

ω =
dx

y(1+ x2)
=

dx
t

=
4dv

u
.

In particular E is closely related to the lemniscatic elliptic integral∫ dx√
1− x4

.

See [65] pp. 524–525, in particular Example 4 on p. 525, which asserts that

sin lemn2
φ + cos lemn2

φ + sin lemn2
φ · cos lemn2

φ = 1.

In other words the elliptic curve EC is uniformized by the lemniscatic functions sin lemnφ and cos lemnφ .
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(2) Using the above Weierstrass equation 0 = u2−v(v+4), it is easy to determine the cardinality of EFp(Fp)

if p≡−1 (mod 4): Clearly the curve EFp is isomorphic to the elliptic curve E ′Fp
with Weierstrass equation

0 = Y 2 +X(X2 +4). Because −1 is not a quadratic residue modulo p, for every element a ∈ P1(Fp), there
are exactly two elements in EFp(Fp)tE ′Fp

(Fp) lying above a. So 2 · card(EFp(Fp)) = 2 · (1+ p).

(2) The elliptic curve EL admits complex multiplication by Z[
√
−1] for any field L over Z[

√
−1, 1

2 ], i.e. a
field L of characteristic different from 2 plus a specified element e ∈ L with e2 = −1: there is an automor-
phism ι of E over Q(

√
−1) of order 4 such that

ι
∗(x) =

1
1
, ι
∗(y) = ey, ι

∗(t) =
et
x2 , ι

∗(u) = eu, ι
∗(v) =−v.

(3) The four obvious Q-rational points (0,±1) and (±1,0) are the only Q-rational points of E. The elliptic
curve E has conductor 32 as already mentioned, and its minimal discriminant is −212.

(4) It turns out that the curve E is isomorphic over Q to the modular curve X0(32). Under the uniformization
of (the non-cusp part of) X0(32) by the upper-half plane, the automorphism ι of E corresponds to the map
τ 7→ τ + 1

4 on the upper-half plane.

§7. The monodromy theorem
We discuss (a simplified version of) a proof by Grothendieck: the monodromy theorem as written down by
Serre and Tate in the appendix of [61], as Proposition (Grothendieck) on page 515.

Since Gauss we know the problem of determining the representation of the fundamental group of a
curve S0 minus a point (or the open unit disk given by 0 <| z |≤ 1) on a local system, on (co)homology
of a fibration above S0, or whatever, by the permutation obtained by prolonging sections going around the
missing point. Gauss studied such substitutions on prolonging hypergeometric functions and Jordan showed
us these substitutions generate a group (now called the monodromy group).

The eigenvalues of such a monodromy representation are roots of unity; there have been many proofs
in various situations. Here we show how the action of the arithmetic part on the geometric part of the
fundamental group gives access to this result. First a motivating example:

Lemma 1. Consider K =Q(T ). For some n ∈ Z>1 consider

f = Xn−T ∈ K[X ]

and let L/K be the splitting field,

K =Q(T )⊂ E =Q(ζn,T )⊂ L =Q(ζn,
n
√

T ).

Then we have an exact sequence

1→ N = Aut(L/E)∼= Z/n→ Aut(L/K) = G→ H := Aut(E/K)∼= (Z/n)∗→ 1.

We leave the proof of this lemma to the reader. We like to give an interpretation of this result in the vein of
the geometric-arithmetic exact sequence (g-a) above:

the geometric part: the covering given by “ n
√

T ” is the analogy of an unramified cyclic-n cover of the
open unit disk,

the arithmetic part is H = (Z/n)∗;
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moreover the exact sequence is a semi-direct product given by the natural (Z/n)∗→ Aut(N).
This observation, in al kind of generalizations, is the starting idea of the wonderful proof of Grothendieck of
the monodromy theorem. Let us give a simplified version of [61], the monodromy theorem in the appendix
as Proposition (Grothendieck) on page 515 (however, the result and the proof below give the essence of the
more general result).

Lemma 2. Let M ∈ GL(m,Q) be a m×m-matrix over Q, with determinant not equal to zero. (This will be
the monodromy matrix.) Suppose there is S ∈ GL(m,Q) and t ∈ Z>0 such that

S−1·M·S = Mt .

(The matrix S comes from the action of the Galois group on the geometric part, and this equality is the
essence of Lemma 1.) The there exists e ∈ Z>0 such that for any eigenvalue λ ∈Q we have λ e = 1.

Proof of Lemma 2. Let Λ⊂Q be the set of eigenvalues of M. Note that all these eigenvalues are unequal
to zero. Then Λ is also the set of eigenvalues of S−1·M·S. Hence

λ 7→ λ t gives a permutation of Λ.

Iterating this permutation (m!) times we obtain the identity map on Λ. This is just saying that

λ
t(m!)

= λ , hence λ
e = 1 with e := t(m!)−1.

This proves Lemma 2.

We invite the reader to read the more technical result as recorded in [61], proposition on page 515, and be
convinced that the short and elegant argument above is the essence of the the proof by Grothendieck.

A REMARK ON TERMINOLOGY. In 19-th century mathematics we find the terminology “the monodromy
theorem” for the fact that analytic continuation of an analytic function over a simply connected domain gives
a univalent function (after a “dromos” we get ”mono” functions). Also in modern algebraic geometry again
the terminology “monodromy theorem” is used more generally, to include purity of the monodromy weight
filtration.
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For many periods of his life in 1970–2014 it was unclear to us how to reach him, personally and also at his
changing locations. Hence it came as a surprise that one of us received a gentle and interesting letter from
Grothendieck, written on February 3, 2010, where the need of contact and communication was obvious.
In this we see the gentle side of Grothendieck and also the need to express his feelings for the past. We
reproduce a scan of this letter, and we provide a transcript.
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Letter from Alexander Grothendieck to Frans Oort, 2010
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Transcript of a letter:

Alexander Grothendieck to Frans Oort
Lasserre February 3, 2010.

Dear Frans Oort,
This letter is motivated by your “coffee table” expository paper on the “algebraic fundamental group”, in the
book “Geometric Galois Actions 1” published in 1997. I was informed last month only, by the editors, of
the existence of the book, and of the existence of the Luminy conference 27 august – 1 september 1955, of
which this book is the first volume of Proceedings. (The editors met me the very next day of the conference,
on September 2, 1995, without ever mentioning the conference, nor the project of this book.) When looking
through this book, I was struck at once by your presence among the contributors, and by your contribution.
And I was glad to find there an earnestness, a warmth of tone, highly unusual nowadays in mathematical
spheres, and even elsewhere. I then thought at once of writing you, with a word of thanks for you warm
implication in this coffee-table account. This was Jan. 12, and in the meanwhile some other matters have
occur(r)ed to me, about which to communicate with you, if you should be interested. First I must check if
this letter reaches you at your former address (as you may have presently retired). If so, I would appreciate
getting your personal address, and will then write more extensively about matters close to my heart.

At present, I restrict to inquire: did you get the copy of “Récoltes et Semailles” I certainly sent you,
among the very first, with a word of dedication to you, by September 1985? I do not remember that I got
any echo from you in response, at that time or later. This is “Reflection and Testimonial” on my life as a
mathematician, unreadable as it is I admit, has much meaning for me, if not to anyone else!

With my best regards, and hoping to read you very soon

Alexander Grothendieck

Later comments by FO:
– The copy of “Récoltes et Semailles” mentioned in Grothendieck’s letter never reached me;
– an answer to this letter was opened, resealed, and came back with the text: “retour á l’envoyeur [personal
address missing]”.
– a letter of admiration from an audience at UPenn was returned unopened.
Alas — further attempts for communication were in vain.

Ching-Li Chai Frans Oort
Department of Mathematics Mathematical Institute
University of Pennsylvania Utrecht University
209 S. 33rd Street Pincetonplein 5
Philadelphia, PA 19104-6395 NL 3584 CC Utrecht
U.S.A. The Netherlands

Email: chai@math.upenn.edu Email: f.oort@uu.nl
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