Notes on semisimple algebras

§1. Semisimple rings

- (1.1) **Definition** A ring R with 1 is *semisimple*, or left semisimple to be precise, if the free left R-module underlying R is a sum of simple R-module.
- (1.2) **Definition** A ring R with 1 is *simple*, or left simple to be precise, if R is semisimple and any two simple left ideals (i.e. any two simple left submodules of R) are isomorphic.
- (1.3) Proposition A ring R is semisimple if and only if there exists a ring S and a semisimple S-module M of finite length such that $R \cong \operatorname{End}_S(M)$
- (1.4) Corollary Every semisimple ring is Artinian.
- (1.5) Proposition Let R be a semisimple ring. Then R is isomorphic to a finite direct product $\prod_{i=1}^{s} R_i$, where each R_i is a simple ring.
- (1.6) Proposition Let R be a simple ring. Then there exists a division ring D and a positive integer n such that $R \cong M_n(D)$.
- (1.7) **Definition** Let R be a ring with 1. Define the *radical* of R to be the intersection of all maximal left ideals of R. The above definitions uses left R-modules. When we want to emphasize that, we say that \mathfrak{n} is the *left radical* of R.
- (1.8) Proposition The radical of a semisimple ring is zero.
- (1.9) Proposition Let R be a simple ring. Then R has no non-trivial two-sided ideals, and its radical is zero.
- (1.10) Proposition Let R be an Artinian ring whose radical is zero. Then R is semisimple. In particular, if R has no non-trivial two-sided ideal, then R is simple.
- (1.11) Remark In non-commutative ring theory, the standard definition for a ring to be semisimple is that its radical is zero. This definition is *different* from Definition 1.1, For instance, \mathbb{Z} is not a semisimple ring in the sense of Def. 1.1, while the radical of \mathbb{Z} is zero. In fact the converse of Prop. 1.10 holds; see Cor. 1.4 below.
- (1.12) Exercise. Let R be a ring with 1. Let $\mathfrak n$ be the radical of R
 - (i) Show that there exists a maximal left ideal in R. Deduce that the radical of R is a proper left ideal of R. (Hint: Use Zorn's Lemma.)
 - (ii) Show that $\mathfrak{n} \cdot M = (0)$ for every simple left R-module M. (Hint: Show that for every $0 \neq x \in M$, the set of all elements $y \in R$ such that $y \cdot x = 0$ is a maximal left ideal of R.)
- (iv) Suppose that I is a left ideal of R such that $I \cdot M = (0)$ for every simple left R-module M. Prove that $I \subseteq \mathfrak{n}$.

- (v) Show that \mathfrak{n} is a two-sided ideal of R. (Hint: Use (iv).)
- (vi) Let I be a left ideal of R such that $I^n = (0)$ for some positive integer n. Show that $I \subseteq \mathfrak{n}$.
- (vi) Show that the radical of R/\mathfrak{n} is zero.
- (1.13) Exercise. Let R be a ring with 1 and let \mathfrak{n} be the (left) radical of R.
 - (i) Let $x \in \mathfrak{n}$. Show that $R \cdot (1+x) = R$, i.e. there exists an element $z \in R$ such that $z \cdot (1+x) = 1$.
- (ii) Suppose that J is a left ideal of R such that $R \cdot (1+x) = R$ for every $x \in J$. Show that $J \subseteq \mathfrak{n}$. (Hint: If not, then there exists a maximal left ideal \mathfrak{m} of R such that $J + \mathfrak{m} \ni 1$.)
- (iii) Let $x \in \mathfrak{n}$, and let z be an element of R such that $z \cdot (1+x) = 1$. Show that $z 1 \in \mathfrak{n}$. Conclude that $1 + \mathfrak{n} \subset R^{\times}$.
- (iv) Show that the \mathfrak{n} is equal to the right radical of R. (Hint: Use the analogue of (i)–(iii) for the right radical.)

§2. Simple algebras

(2.1) Proposition Let K be a field. Let A be a central simple algebra over K, and let B be simple K-algebra. Then $A \otimes_K B$ is a simple K-algebra. Moreover $Z(A \otimes_K B) = Z(B)$, i.e. every element of the center of $A \otimes_K B$ has the form $1 \otimes b$ for a unique element $b \in Z(B)$. In particular, $A \otimes_K B$ is a central simple algebra over K if both A and B are.

PROOF. We assume for simplicity of exposition that $\dim_K(B) < \infty$; the proof works for the infinite dimensional case as well. Let b_1, \ldots, b_r be a K-basis of B. Define the *length* of an element $x = \sum_{i=1}^r a_i \otimes b_i \in A \otimes B$, $a_i \in A$ for $i = 1, \ldots, r$, to be $\operatorname{Card}\{i \mid a_i \neq 0\}$.

Let I be a non-zero ideal in $A \otimes_K B$. Let x be a non-zero element of I of minimal length. After relabelling the b_i 's, we may and do assume that x has the form

$$x = a_1 \otimes b_1 + \sum_{i=2}^{s} a_i \otimes b_i,$$

and a_1, \ldots, a_s are all non-zero. Since $a_1 \neq 0$ and A is simple, there exist elements u_1, u_2, \ldots, u_h and v_1, v_2, \ldots, v_h in A such that $\sum_{j=1}^h u_j a_1 v_j = 1$. Consider the element

$$y = \sum_{j=1}^{h} (u_j \otimes 1) \cdot x \cdot (v_j \otimes 1) \in I.$$

We have

$$y = 1 \otimes b_1 + \sum_{i=2}^{s} a_i' \otimes b_i$$

where $a_i' = \sum_{j=1}^h u_j \cdot a_i \cdot v_j$ for $j=2,\ldots,s$. Clearly $y \neq 0$ and its is at most s. So y has length s and $a_i' \neq 0$ for $i=2,\ldots,s$. Consider the element $[a\otimes 1,y]\in I$ with $a\in A$, whose length is strictly less than s. Therefore $[a\otimes 1,y]=0$ for all $a\in A$, i.e. $[a,a_i']=0$ for all $a\in A$ and all $i=2,\ldots,s$. In other words, $a_i'\in K$ for all $i=2,\ldots,s$. Write $a_i'=\lambda_i\in K$, and $y=1\otimes b\in I$, where $b=b_1+\lambda_2b_2+\cdots\lambda_sb_s\in B$, $b\neq 0$. So $1\otimes BbB\subseteq I$. Since B is simple, we have BbB=B and hence $I=A\otimes_K B$. We have shown that $A\otimes_K B$ is simple.

Next we prove that $Z(A \otimes_K B) = K$. Let $x = \sum_{i=1}^r a_i \otimes b_i$ be any element of $Z(A \otimes_K B)$, with $a_1, \ldots, a_r \in A$. We have

$$0 = [a \otimes 1, x] = \sum_{i=1}^{r} [a, a_i] \otimes b_i$$

for all $a \in A$. Hence $a_i \in \mathbf{Z}(A) = K$ for each i = 1, ..., r, and $x = 1 \otimes b$ for some $b \in B$. The condition that $0 = [1 \otimes y, x]$ for all $y \in B$ implies that $b \in \mathbf{Z}(B)$ and hence $x \in 1 \otimes \mathbf{Z}(B)$. \square

(2.2) Corollary Let A be a finite dimensional algebra over a field K, and let $n = \dim_K(A)$. If A is a central simple algebra over K, then

$$A \otimes_K A^{\text{opp}} \xrightarrow{\sim} \text{End}_K(A) \cong M_n(K)$$
.

Conversely, if $A \otimes_K A^{\text{opp}} \to \text{End}_K(A)$, then A is a central simple algebra over K. \square

PROOF. Suppose that A is a central simple algebra over K. By Prop. 2.1, $A \otimes_K A^{\text{opp}}$ is a central simple algebra over K. Consider the map

$$\alpha: A \otimes_K A^{\mathrm{opp}} \to \mathrm{End}_K(A)$$

which sends $x \otimes y$ to the element $u \mapsto xuy \in \operatorname{End}_K(A)$. The source of α is simple by Prop. 2.1, so α is injective because it is clearly non-trivial. Hence it is an isomorphism because the source and the target have the same dimension over K.

Conversely, suppose that $A \otimes_K A^{\text{opp}} \twoheadrightarrow \operatorname{End}_K(A)$ and I is a proper ideal of A. Then the image of $I \otimes A^{\text{opp}}$ in $\operatorname{End}_K(A)$ is an ideal of $\operatorname{End}_K(A)$ which does not contain Id_A . so A is a simple K-algebra. Let $L := \operatorname{Z}(A)$, then the image of the canonical map $A \otimes_K A^{\text{opp}}$ in $\operatorname{End}_K(A)$ lies in the subalgebra $\operatorname{End}_L(A)$, hence L = K. \square

- **(2.3) Lemma** Let D be a finite dimensional central division algebra over an algebraically closed field K. Then D = K. \square
- (2.4) Corollary The dimension of any central simple algebra over a field is a perfect square.
- **(2.5) Lemma** Let A be a finite dimensional central simple algebra over a field K. Let $F \subset A$ be an overfield of K contained in A. Then $[F:K] \mid [A:K]^{1/2}$. In particular if $[F:K]^2 = [A:K]$, then F is a maximal subfield of A.

PROOF. Write $[A:K] = n^2$, [F:K] = d. Multiplication on the left defines an embedding $A \otimes_K F \hookrightarrow \operatorname{End}_F(A)$. By Lemma 3.1, $n^2 = [A \otimes_K : F]$ divides $[\operatorname{End}_F(A) : F] = (n^2/d)^2$, i.e. $d^2 \mid n^2$. So d divides n. \square

(2.6) Lemma Let A be a finite dimensional central simple algebra over a field K. If F is a subfield of A containing K, and $[F:K]^2 = [A:K]$, then F is a maximal subfield of K and $A \otimes_K F \cong \mathrm{M}_n(F)$, where $n = [A:K]^{1/2}$.

PROOF. We have seen in Lemma 2.5 that F is a maximal subfield of A. Consider the natural map $\alpha: A \otimes_K F \to \operatorname{End}_K(A)$, which is injective because $A \otimes_K F$ is simple and α is non-trivial. Since the dimension of the source and the target of α are both equal to n^2 , α is an isomorphism. \square

(2.7) Proposition Let D be a non-commutative central division algebra over a field K, There exists an element $u \notin K$ which is separable over K.

PROOF. Suppose that every element $u \notin K$ is purely inseparable over K. Clearly K is infinite. The assumption implies that the minimial polynomial of every element of D has the form $T^{p^i} - a$ for some $i \in \mathbb{N}$ and some $a \in K$. Moreover $p^i \leq \dim_K(D)^{1/2}$. So there exists an integer N such that $x^{p^N} \in K$ for all $x \in D$. Therefore $[x^{p^N}, y] = 0$ for all $x, y \in D$.

Let \underline{D} be the affine K-scheme such that $\underline{D}(L) = D \otimes_K L$ for every extension field L/K. There is a K-morphism

$$f: \underline{D} \times_{\operatorname{Spec}(K)} \underline{D} \to \underline{D}$$

such that $f(x,y) = [x^{p^N}, y]$ for all extension field L/K and all $x, y \in \underline{D}(L)$. We know that this morphism is zero on the dense subset $\underline{D}(K) \times \underline{D}(K)$, hence f is the zero morphism. The last statement is impossible, for $\underline{D}(K^{\mathrm{alg}}) \cong \mathrm{M}_r(L^{\mathrm{alg}})$ with $r = \dim_K(D)^{1/2} > 0$ and the equality $[x^{p^N}, y] = 0$ for all $x, y \in \mathrm{M}_r(L^{\mathrm{alg}})$ is absurd. \square

(2.8) Theorem (Noether-Skolem) Let B be a finite dimensional central simple algebra over a field K. Let A_1, A_2 be simple K-subalgebras of B. Let $\phi: A_1 \xrightarrow{\sim} A_2$ be a K-linear isomorphism of K-algebras. Then there exists an element $x \in B^{\times}$ such that $\phi(y) = x^{-1}yx$ for all $y \in A_1$.

PROOF. Consider the simple K-algebra $R:=B\otimes_K A_1^{\mathrm{opp}}$, and two R-module structures on the K-vector space V underlying B: an element $u\otimes a$ with $u\in B$ and $a\in A_1^{\mathrm{opp}}$ operates either as $b\mapsto uba$ for all $b\in V$, or as $b\mapsto ub\phi(a)$ for all $b\in V$. Hence there exists a $\psi\in\mathrm{GL}_K(V)$ such that

$$\psi(uba) = u\psi(b)\phi(a)$$

for all $u, b \in B$ and all $a \in A_1$. One checks easily that $\psi(1) \in B^{\times}$: if $u \in B$ and $u \cdot \psi(1) = 0$, then $\psi(u) = 0$, hence u = 0.

Taking b = 1 = 1 in the displayed formula, we get $\psi(u) = u\psi(1)$ for all $u \in B$. Similarly taking u = b = 1 we get $\psi(a) = \psi(1)\phi(a)$ for all $a \in A_1$. We get $\psi(1)\phi(a) = \psi(a) = a\psi(1)$ for all $a \in A_1$, therefore $\phi(a) = \psi(1)^{-1} \cdot a \cdot \psi(1)$ for every $a \in A_1$. \square

(2.9) Theorem Let B be a K-algebra and let A be a finite dimensional central simple K-subalgebra of B. Then the natural homomorphism $\alpha: A \otimes_K Z_B(A) \to B$ is an isomorphism.

PROOF. Passing from K to K^{alg} , we may and do assume that $A \cong M_n(K)$, and we fix an isomorphism $A \xrightarrow{\sim} M_n(K)$.

First we show that α is surjective. Given an element $b \in B$, define elements $b_{ij} \in B$ for $1 \le i, j \le n$ by

$$b_{ij} := \sum_{k=1}^{n} e_{ki} b e_{jk},$$

where $e_{ki} \in M_n(K)$ is the $n \times n$ matrix whose (k, i)-entry is equal to 1 and all other entries equal to 0. One checks that each b_{ij} commutes with all elements of $A = M_n(K)$. The following computation

$$\sum_{i,j=1}^{n} b_{ij} e_{ij} = \sum_{i,j,k} e_{ki} b e_{jk} e_{ij} = \sum_{i,j} e_{ii} b e_{jj} = b$$

shows that α is surjective.

Suppose that $0 = \sum_{i,j=1}^{n} b_{ij}e_{ij}, b_{ij} \in \mathcal{Z}_B(A)$ for all $1 \leq i,j \leq n$. Then

$$0 = \sum_{k=1}^{n} e_{kl} \left(\sum_{i,j} b_{ij} e_{ij} \right) e_{mk} = \sum_{k=1}^{n} b_{lm} e_{kk} = b_{lm}$$

for all $0 \le l, m \le n$. Hence α is injective. \square

(2.10) **Theorem** Let B be a finite dimensional central simple algebra over a field K, and let A be a simple K-subalgebra of B. Then $Z_B(A)$ is simple, and $Z_B(Z_B(A)) = A$.

PROOF. Let $C = \operatorname{End}_K(A) \cong \operatorname{M}_n(K)$, where n = [A:K]. Inside the central simple K-algebra $B \otimes_K C$ we have two simple K-subalgebras, $A \otimes_K K$ and $K \otimes_K A$. Here the right factor of $K \otimes_K A$ is the image of A in $C = \operatorname{End}_K(A)$ under left multiplication. Clearly these two simple K-subalgebras of $B \otimes_K C$ are isomorphic, since both are isomorphic to A as a K-algebra. By Noether-Skolem, these two subalgebras are conjugate in $B \otimes_K C$ by a suitable element of $(B \otimes_K C)^{\times}$, therefore their centralizers (resp. double centralizers) in $B \otimes_K C$ are conjugate, hence isomorphic.

Let's compute the centralizers first:

$$Z_{B\otimes_K C}(A\otimes_K K) = Z_B(A)\otimes_K C$$

while

$$Z_{B \otimes_K C}(K \otimes_K A) = B \otimes_K A^{\mathrm{opp}}$$
.

Since $B \otimes_K A^{\text{opp}}$ is central simple over K, so is $Z_B(A) \otimes_K C$. Hence $Z_B(A)$ is simple.

We compute the double centralizers:

$$Z_{B \otimes_K C}(Z_{B \otimes_K C}(A \otimes_K K)) = Z_{B \otimes_K C}(Z_B(A) \otimes_K C) = Z_B(Z_B(A) \otimes_K K)$$

while

$$Z_{B\otimes_K C}(Z_{B\otimes_K C}(K\otimes_K A)) = Z_{B\otimes_K C}(B\otimes_K A^{\mathrm{opp}}) = K\otimes_K A$$

So $Z_B(Z_B(A))$ is isomorphic to A as K-algebras. Since $A \subseteq Z_B(Z_B(A))$, the inclusion is an equality. \square

§3. Some invariants

(3.1) Lemma Let K be a field and let A be a finite dimensional simple K-algebra. Let M be an (A, A)-bimodule. Then M is free as a left A-module.

PROOF. We have $A \cong \mathrm{M}_n(D)$ for some division K-algebra D. To say that M is free means that length_A $(M) \equiv 0 \pmod{n}$. Let A_s be the left A-module underlying A. Because A_s is isomorphic direct sum of n copies of the irreducible left A-module $N := \mathrm{M}_{n \times 1}(D)$, we have

$$M \cong M \otimes_A A_s \cong (M \otimes_A N)^{\oplus n}$$
.

So length_A(M) $\equiv 0 \pmod{n}$. \square

- (3.2) **Definition** Let K be a field, B be a K-algebra, and let A be a finite dimensional simple K-subalgebra of B. Then B is a free left A-module by Lemma 3.1. We define the rank of B over A, denoted [B:A], to be the rank of B as a free left A-module. Clearly $[B:A] = \dim_K(B)/\dim_K(A)$ if $\dim_K(A) < \infty$.
- (3.3) **Definition** Let K be a field. Let B be a finite dimensional simple K-algebra, and let A be a simple K-subalgebra of B. Let N be a left simple B-module, and let M be a left simple A-module.
 - (i) Define $i(B, A) := \operatorname{length}_B(B \otimes_A M)$, called the *index* of A in B.
 - (ii) Define $h(B, A) := \text{length}_A(N)$, called the *height* of B over A.

Here [B:A] denotes the A-rank of B_s , where B_s is the free left A-module underlying B.

- (3.4) Lemma Notation as in Def. 3.3.
 - (i) $\operatorname{length}_{B}(B \otimes_{A} U) = i(B, A) \operatorname{length}_{A}(U)$ for every left A-module U.
 - (ii) $\operatorname{length}_A(V) = h(B, A) \cdot \operatorname{length}_B(V)$ for every left B-module V.
- (iii) $\operatorname{length}_{B}(B_{s}) = i(B, A) \cdot \operatorname{length}_{A}(A_{s}).$
- (iv) $\operatorname{length}_A(B \otimes_A U) = [B : A] \cdot \operatorname{length}_A(U)$ for every left A-module U.
- (v) $[B:A] = h(B,A) \cdot i(B,A)$

PROOF. Statements (i), (ii) follow immediately from the definition. The statement (iii) follows from (i) and the fact that $B_s \cong B \otimes_A A_s$. The statement (iv) holds for $U = A_s$ from the definition of [B:A], hence it hold for all left A-modules U. To show (v), we apply (iv) to a simple A-module M and get

$$[B:A] = \operatorname{length}_A(B \otimes_A M) = h(B,A) \operatorname{length}_B(B \otimes_A M) = h(B,A) i(B,A)$$
.

Another proof of (iv) is to use the A-module A_s instead of a simple A-module M:

$$[B:A] \operatorname{length}_A(A_s) = \operatorname{length}_A(B_s) = \operatorname{length}_B(B_s) h(B,A) = h(B,A) i(B,A) \operatorname{length}_A(A_s).$$

The last equality follows from (iii).

- **(3.5) Lemma** Let $A \subset B \subset C$ be inclusion of simple algebras over a field K. Then $i(C, A) = i(C, B) \cdot i(B, A)$, $h(C, A) = h(C, B) \cdot h(B, A)$, and $[C : A] = [C : B] \cdot [B : A]$. \square
- (3.6) Lemma Let K be an algebraically closed field. Let B be a finite dimensional simple K-algebra, and let A be a semisimple K-subalgebra of B. Let M be a simple A-module, and let N be a simple B-module.
 - (i) N contains M as a left A-module.
- (ii) The following equalities hold.

$$\dim_K(\operatorname{Hom}_B(B\otimes_A M, N)) = \dim_K(\operatorname{Hom}_A(M, N)) = \dim_K(\operatorname{Hom}_A(N, M))$$
$$= \dim_K(\operatorname{Hom}_B(N, \operatorname{Hom}_A(B, M)))$$

(iii) Assume in addition that A is simple. Then i(B, A) = h(B, A).

PROOF. Statements (i), (ii) are easy and left as exercises. The statement (iii) follows from the first equality in (ii).

(3.7) Lemma Let A be a simple algebra over a field K. Let M be a non-trivial finitely generated left A-module, and let $A' := \operatorname{End}_A(M)$. Then $\operatorname{length}_A(M) = \operatorname{length}_{A'}(A'_s)$, where A'_s is the left A'_s -module underlying A'.

PROOF. Write $M \cong U^n$, where U is a simple A-module. Then $A' \cong \mathrm{M}_n(D)$, where $D := \mathrm{End}_A(U)$ is a division algebra. So length_{A'} $(A'_s) = n = \mathrm{length}_A(M)$. \square

- (3.8) Proposition Let K be a field, B be a finite dimensional simple K-algebra, and let A be a simple K-subalgebra of B. Let N be a non-trivial B-module. Then
 - (i) $A' := \operatorname{End}_A(N)$ is a simple K-algebra, and $B' := \operatorname{End}_B(N)$ is a simple K-subalgebra of A'.
 - (ii) i(A', B') = h(B, A), and h(A', B') = i(B, A).

PROOF. The statement (i) is easy and omitted. To prove (ii), we have

$$\operatorname{length}_{A}(N) = \operatorname{length}_{A'}(A'_{s}) = i(A', B') \operatorname{length}_{B'}(B'_{s}),$$

where the first equality follows from Lemma 3.7 and the second equality follows from Lemma 3.4 (iii). We also have

$$\operatorname{length}_A(N) = h(B, A) \operatorname{length}_B(N) = h(B, A) \operatorname{length}_{B'}(B'_s)$$

where the last equality follows from Lemma 3.7. So we get i(A', B') = h(B, A). Replacing (B, A) by (A', B'), we get i(B, A) = h(A', B'). \square

(3.9) Extending the method in , we can express the invariants i(B, A) and h(B, A) somewhat more explicitly in terms of the basic invariants of B and A. Write

$$A \cong M_m(D), \quad B \cong M_n(E)$$

where E is a central division algebra over K, and E is a central division algebra over a finite extension field L/K. Let $d^2 = \dim_L(D)$, $e^2 = \dim_K(E)$. Let $M \cong D^{\oplus m}$, $N \cong E^{\oplus n}$, with their natural module structure over $M_m(D)$ and $M_n(E)$ respectively. The canonical isomorphism

$$\operatorname{Hom}_B(B \otimes_A M, N) \cong \operatorname{Hom}_A(M, N)$$

gives us the equality

$$i(B,A) \cdot e^2 = h(B,A) \cdot d^2 \cdot [L:K]$$
.

Together with $i(B,A) \cdot h(B,A) = [B:A] = \frac{n^2 e^2}{m^2 d^2 [L:K]}$, we get

$$i(B, A) = \frac{n}{m}, \qquad h(B, A) = \frac{[B : A]}{(n/m)}.$$

In particular, $m \mid n$, and $(n/m) \mid [B:A]$.

§4. Centralizers

- **(4.1) Theorem** Let K be a field. Let B be a finite dimensional central simple algebra over K. Let A be a simple K-subalgebra of B, and let $A' := Z_B(A)$. Let $L := A \cap A' = Z(A)$. Then the following holds.
 - (i) A' is a simple K-algebra.
- (ii) $A := Z_B(Z_B(A))$.
- (iii) $[B:A'] = [A:K], [B:A] = [A':K], [B:K] = [A:K] \cdot [A':K].$
- (iv) L = Z(A) = Z(A'); A and A' are linearly disjoint over L.
- (v) If A is a central simple algebras over K, then $A \otimes_K A' \xrightarrow{\sim} B$.
- (vi) For any non-trivial B-module N we have natural isomorphisms

$$\operatorname{End}_B(N) \otimes_K A \xrightarrow{\sim} \operatorname{End}_{\operatorname{Z}_B(A)}(N), \qquad \operatorname{End}_B(N) \otimes_K \operatorname{Z}_B(A) \xrightarrow{\sim} \operatorname{End}_A(N).$$

Remark (1) Statements (i) and (ii) of Thm. 4.1 is the content of double centralizer theorem 2.10. The proof in 2.10 uses Noether-Skolem and the fact that the double centralizer of any K-algebra A in $\operatorname{End}_K(A)$ is equal to itself. The proof in 4.1 relies on Prop. 3.8.

(2) Statement (v) of Thm. 4.1 is a special case of Thm. 2.9.

PROOF. Let N be a non-trivial left B-module. Let $D := \operatorname{End}_B(N)$. We have $D \subseteq \operatorname{End}_K(N) \supseteq B$, and $\operatorname{Z}(D) = \operatorname{Z}(B) = K$. So $D \otimes_K A$ is a simple K-algebra, and we have

$$D \otimes_K A \xrightarrow{\sim} D \cdot A \subseteq \operatorname{End}_K(N) =: C$$

where $D \cdot A$ is the subalgebra of $\operatorname{End}_K(N)$ generated by D and A. We have $B \cong \operatorname{M}_n(R)$ for some central division K-algebra R. Under this identification we can take N to be $\operatorname{M}_{n\times 1}(R)$. Then $D = R^{\operatorname{opp}}$, operating naturally on $\operatorname{M}_{n\times 1}(R)$, and $\operatorname{Z}_C(D) = B$. So we know one instance of the double centralizer theorem; $\operatorname{Z}_C(\operatorname{Z}_C(B)) = B$. We will leverage this one instance to prove the general double centralizer theorem. We have

$$Z_C(D \cdot A) = Z_C(D) \cap Z_C(A) = B \cap Z_C(A) = A'$$
.

Hence $A' = \operatorname{End}_{D \cdot A}(N)$ is simple, because $D \cdot A$ is simple. We have proved (i).

Apply Prop. 3.8 (ii) to the pair $(D \cdot A, D)$ and the $D \cdot A$ -module N. We get

$$[A:K] = [D \cdot A:D] = [B:A']$$

since $Z_C(D) = B$. On the other hand, we have

$$[B:A] \cdot [A:K] = [B:K] = [B:A'] \cdot [A':K] = [A:K] \cdot [A':K]$$

so [B:A] = [A':K]. We have proved (iii).

Apply (i) and (iii) to the simple K-subalgebra $A' \subseteq B$, we see that $[A : K] = [Z_B(A') : K]$, so $A = Z_B(Z_B(A))$ because $A \subset Z_B(A')$. We have proved (ii).

Let $L := A \cap A' = \operatorname{Z}(A) \subseteq \operatorname{Z}(A') = \operatorname{Z}(A)$. The last equality follows from (ii). The tensor product $A \otimes_L A'$ is a central simple algebra over L since A and A' are central simple over L. So the canonical homomorphism $A \otimes_L A' \to B$ is an injection. We have prove (iv). The above inclusion is an equality if and only if L = K, because $\dim_L(B) = [L : K] \cdot [A : L] \cdot [A' : L]$.

We have seen in the proof of (i) that the centralizer of the image C of $\operatorname{End}_B(N) \otimes_K A$ in $\operatorname{End}_K(N)$ is $\operatorname{Z}_B(A)$. So C is equal to $\operatorname{End}_{\operatorname{Z}_B(A)}(N)$. We have proved the first equality in (vi). The second equality in (vi) follows. \square

Remark (a) Theorem 4.1 (iii) is crucial in 4.3–4.6 below.

- (b) One can also finish the proof of (vi) by dimension count, after having shown a natural injection $\operatorname{End}_B(N) \otimes_K A' \hookrightarrow \operatorname{End}_A(N)$. Let $r = \dim_K(N)$. Then
 - $\dim_K(\operatorname{End}_A(N)) = r^2/\dim_K(A),$
 - $\dim_K(\operatorname{End}_B(N)) = r^2/\dim_K(B),$
 - $\dim_K(A') = \dim_K(B)/\dim_K(A)$,

all by 4.1 (iii). So $\dim_K(\operatorname{End}_B(N) \otimes_K A') = \dim_K(\operatorname{End}_A(N))$.

(4.2) Corollary Notation as in 4.1. Let $L := Z(A) = Z(Z_B(A))$. Then $[A \otimes_L Z_B(A)]$ and $[B \otimes_K L]$ are equal as elements of Br(L).

PROOF. Take N = B, the left regular representation of B, in Thm. 4.1. The second equality in 4.1 (vi) becomes

$$B^{\mathrm{opp}} \otimes_K \mathrm{Z}_B(A) \cong \mathrm{End}_A(B_s) \cong \mathrm{M}_{[B:A]}(A^{\mathrm{opp}})$$

because B_s is a free left A-module of rank [B:A]. Similarly the first equality in 4.1 (vi) reads

$$B^{\text{opp}} \otimes_K A \cong M_{[B:Z_B(A)]}(Z_B(A)^{\text{opp}}).$$

(4.3) Corollary Let A be a finite dimensional central simple algebra over a field K, and let F be a subfield of A which contains K. Then F is a maximal subfield of A if and only if $[F:K]^2 = [A:K]$.

PROOF. Immediate from Thm. 4.1 (iii).

(4.4) Proposition Let D be a finite dimensional central division algebra over a field K. Then D admits a maximal subfield L with $[L:K]^2 = \dim_K(D)$ such that L is separable over K. In particular D has a separable splitting field.

PROOF. Induction on $\dim_K(D)$, use Proposition 2.7 and Theorem 4.1 (iii). \square

Remark It is not true that every finite dimensional central simple algebra A over K has subfield L with $[L:K]^2 = \dim_K(A)$. The most obvious example is when K is algebraically closed. Another similar example is when $K \supset \mathbb{F}_p$ is separably closed and $\dim_K(A)$ is relatively prime to p.

(4.5) Proposition Let A be a finite dimensional central simple algebra over K. Let F be an extension field of K such that $[F:K] = n := [A:K]^{1/2}$. Then there exists a K-linear ring homomorphism $F \hookrightarrow A$ if and only if $A \otimes_K F \cong M_n(F)$.

PROOF. The "only if" part is contained in Lemma 2.6. It remains to show the "if" part. Suppse that $A \otimes_K F \cong \mathrm{M}_n(F)$. Choose a K-linear embedding $\alpha : F \hookrightarrow \mathrm{M}_n(K)$. The central simple algebra $B := A \otimes_K \mathrm{M}_n(K)$ over K contains $C_1 := A \otimes_K \alpha(F)$ as a subalgebra, whose centralizer in B is $K \otimes_K \alpha(F)$. Since $C_1 \cong \mathrm{M}_n(F)$ by assumption, C_1 contains a subalgebra C_2 which is isomorphic to $\mathrm{M}_n(K)$. By Noether-Skolem, $\mathrm{Z}_B(C_2)$ is isomorphic to A over K. So we get $F \cong \mathrm{Z}_B(C_1) \subset \mathrm{Z}_B(C_2) \cong A$. \square

(4.6) Corollary Let Δ be a central division algebra over K, and let F be a finite extension field of K. Let $n = \dim_K(\Delta)^{1/2}$. The field F is a splitting field of Δ if and only if $n \mid [F:K]$ and F is a maximal subfield of $M_r(\Delta)$, where r = [F:K]/n.

PROOF. By 4.5, it suffices to show that if F is a splitting field of Δ , then $n \mid [F : K]$. But then we have an action of Δ on $F^{\oplus n}$, and $n^2 = \dim_K(D) \mid \dim_K(F^{\oplus}) = n[F : K]$. Therefore $n \mid [F : K]$. \square

Remark Here is an equivalent form of 4.6, and a direct proof.

Let A be a central simple algebra over a field K, and let L be a splitting field of A. Then there exists a central simple algebra A_1 in the same Brauer class of A which has a maximal subfield L_1 isomorphic to L over K.

PROOF. Let $\dim_K(A) = n^2$, d = [L : K]. By assumption we have

$$A^{\text{opp}} \otimes_K L \xrightarrow{\alpha} M_n(L) \xrightarrow{j} M_{nd}(K) =: B$$
.

According to 4.1 (iv), $A_1 := \mathbb{Z}_C((j \circ \alpha)(A^{\text{opp}} \otimes 1))$ is a central simple algebra over K, in the same Brauer class as A. Theorem 4.1 (iii) tells us that $\dim_K(A_1) = d^2 = [L:K]^2$. Clearly $L_1 := (j \circ \alpha)(1 \otimes L) \subset A_1$, so L_1 is a maxmial subfield of A_1 . \square