Notes on semisimple algebras

§1. Semisimple rings

(1.1) Definition A ring R with 1 is semisimple, or left semisimple to be precise, if the free
left R-module underlying R is a sum of simple R-module.

(1.2) Definition A ring R with 1 is simple, or left simple to be precise, if R is semisimple
and any two simple left ideals (i.e. any two simple left submodules of R) are isomorphic.

(1.3) Proposition A ring R is semisimple if and only if there exists a ring S and a semisim-
ple S-module M of finite length such that R = Endg(M)

(1.4) Corollary FEvery semisimple ring is Artinian.

(1.5) Proposition Let R be a semisimple ring. Then R is isomorphic to a finite direct
product 7, Ri, where each R; is a simple ring.

(1.6) Proposition Let R be a simple ring. Then there exists a division ring D and a positive
integer n such that R = My(D).

(1.7) Definition Let R be a ring with 1. Define the radical of R to be the intersection of
all maximal left ideals of R. The above definitions uses left R-modules. When we want to
emphasize that, we say that n is the left radical of R.

(1.8) Proposition The radical of a semisimple ring is zero.

(1.9) Proposition Let R be a simple ring. Then R has no non-trivial two-sided ideals, and
its radical is zero.

(1.10) Proposition Let R be an Artinian ring whose radical is zero. Then R is semisimple.
In particular, if R has no non-trivial two-sided ideal, then R is simple.

(1.11) Remark In non-commutative ring theory, the standard definition for a ring to be
semisimple is that its radical is zero. This definition is different from Definition 1.1, For
instance, Z is not a semisimple ring in the sense of Def. 1.1, while the radical of Z is zero. In
fact the converse of Prop. 1.10 holds; see Cor. 1.4 below.

(1.12) Exercise. Let R be a ring with 1. Let n be the radical of R

(i) Show that there exists a maximal left ideal in R. Deduce that the radical of R is a
proper left ideal of R. (Hint: Use Zorn’s Lemma.)

(ii) Show that n- M = (0) for every simple left R-module M. (Hint: Show that for every
0 # x € M, the set of all elements y € R such that y - x = 0 is a maximal left ideal of
R.)

(iv) Suppose that I is a left ideal of R such that I - M = (0) for every simple left R-module
M. Prove that I C n.



(v) Show that n is a two-sided ideal of R. (Hint: Use (iv).)

(vi) Let I be a left ideal of R such that I™ = (0) for some positive integer n. Show that
I Cn.

(vi) Show that the radical of R/n is zero.

(1.13) Exercise. Let R be a ring with 1 and let n be the (left) radical of R.

(i) Let x € n. Show that R- (1 + z) = R, i.e. there exists an element z € R such that
z-(1+2)=1.

(ii) Suppose that J is a left ideal of R such that R-(1+z) = R for every z € J. Show that
J Cn. (Hint: If not, then there exists a maximal left ideal m of R such that J+m > 1.)

(iii) Let = € n, and let z be an element of R such that z- (14 z) = 1. Show that z — 1 € n.
Conclude that 1 +n C R*.

(iv) Show that the n is equal to the right radical of R. (Hint: Use the analogue of (i)—(iii)
for the right radical.)

§2. Simple algebras

(2.1) Proposition Let K be a field. Let A be a central simple algebra over K, and let B be
simple K-algebra. Then A @k B is a simple K-algebra. Moreover Z(A @k B) = Z(B), i.e.
every element of the center of A @k B has the form 1 ® b for a unique element b € Z(B). In
particular, A @k B is a central simple algebra over K if both A and B are.

PROOF. We assume for simplicity of exposition that dimg (B) < oo; the proof works for the
infinite dimensional case as well. Let by,...,b. be a K-basis of B. Define the length of an
element z =%, a4, ®b; € A® B, a; € Afori=1,...,r, tobe Card{i | a; #0}.

Let I be a non-zero ideal in A ® g B. Let « be a non-zero element of I of minimal length.
After relabelling the b;’s, we may and do assume that x has the form

S
$:a1®b1+zai®bi,

i=2
and aq,...,as are all non-zero. Since a; # 0 and A is simple, there exist elements uy, us, ..., up
and vy, vo,...,v, in A such that Z?zl uja; vj = 1. Consider the element
h
Y= (uj@l)-z-(v;®1)el.
j=1
We have )
y=1@b+ > aj@b
i=2
where a = Z?:1 uj-a;-vj for j =2,...,s. Clearly y # 0 and its is at most s. So y has

length s and a; # 0 for i = 2,...,s. Consider the element [a ® 1,y] € I with a € A, whose
length is strictly less than s. Therefore [a ® 1,y] =0 for all a € A, i.e. [a,a]] =0forallac A
and all ¢+ = 2,...,s. In other words, a; € K for all i = 2,...,s. Write a; = \; € K, and

=1®bel, where b=">b1 + Xabo+---Asbs € B, b# 0. So1® BbB C I. Since B is simple,
we have BbB = B and hence I = A ® g B. We have shown that A @ B is simple.



Next we prove that Z(A®k B) = K. Let x = ) ;_, a; ® b; be any element of Z(A ®k B),
with ay,...,a, € A. We have
,
0=fe@ta =3 la,aleb
i=1
for all a € A. Hence a; € Z(A) = K foreachi=1,...,r, and x = 1 ® b for some b € B. The
condition that 0 = [1 ® y, 2] for all y € B implies that b € Z(B) and hence z € 1 ® Z(B). 0O

(2.2) Corollary Let A be a finite dimensional algebra over a field K, and let n = dimg (A).
If A is a central simple algebra over K, then

AR A°PP =y EndK(A) = Mn(K) .
Conversely, if A®g A°PP — Endg(A), then A is a central simple algebra over K. [

PROOF. Suppose that A is a central simple algebra over K. By Prop. 2.1, A ® A°PP is a
central simple algebra over K. Consider the map

a: ARk A°PP — Endg(A)

which sends x ® y to the element u — zuy € Endg(A). The source of « is simple by Prop.
2.1, so « is injective because it is clearly non-trivial. Hence it is an isomorphism because the
source and the target have the same dimension over K.

Conversely, suppose that A @ g A°PP? — Endg (A) and I is a proper ideal of A. Then the
image of I ® A°PP in Endg(A) is an ideal of Endg(A) which does not contain Id4. so A
is a simple K-algebra. Let L := Z(A), then the image of the canonical map A ®p A°PP in
Endg(A) lies in the subalgebra Endy (A), hence L = K. [

(2.3) Lemma Let D be a finite dimensional central division algebra over an algebraically
closed field K. Then D =K. []

(2.4) Corollary The dimension of any central simple algebra over a field is a perfect square.

(2.5) Lemma Let A be a finite dimensional central simple algebra over a field K. Let F C A
be an overfield of K contained in A. Then [F : K] | [A: K|Y/2. In particular if [F : K]> =
[A: K], then F is a mazimal subfield of A.

PROOF. Write [A : K] = n?, [F : K| = d. Multiplication on the left defines an embedding
A®y F — Endp(A). By Lemma 3.1, n? = [A® : F| divides [Endg(A) : F] = (n?/d)?, i.e.
d? | n?. So d divides n. [

(2.6) Lemma Let A be a finite dimensional central simple algebra over a field K. If F is a
subfield of A containing K, and [F : K|> = [A : K], then F is a mazimal subfield of K and
ARy F =M, (F), where n = [A: K]'/2.

PRrROOF. We have seen in Lemma 2.5 that F' is a maximal subfield of A. Consider the natural
map « : A®g F — Endg(A), which is injective because A ®k F' is simple and « is non-
trivial. Since the dimension of the source and the target of a are both equal to n?, « is an
isomorphism. [J



(2.7) Proposition Let D be a non-commutative central division algebra over a field K, There
exists an element u ¢ K which is separable over K.

PROOF. Suppose that every element u ¢ K is purely inseparable over K. Clearly K is
infinite. The assumption implies that the minimial polynomial of every element of D has the
form TP —a for some i € N and some a € K. Moreover p* < dimg (D)'/2. So there exists an
integer N such that 2?" € K for all z € D. Therefore [a:pN,y] =0 for all z,y € D.
Let D be the affine K-scheme such that D(L) = D ®g L for every extension field L/K.
There is a K-morphism
f:D XSpec(K) D—D

such that f(z,y) = [P, y] for all extension field L/K and all z,y € D(L). We know that this
morphism is zero on the dense subset D(K) x D(K), hence f is the zero morphism. The last
statement is impossible, for D(K?€) = M, (L*#) with r = dimg (D)2 > 0 and the equality
[:L‘pN,y] =0 for all z,y € M,.(L*8) is absurd. []

(2.8) Theorem (Noether-Skolem) Let B be a finite dimensional central simple algebra
over a field K. Let Ay, Ay be simple K-subalgebras of B. Let ¢ : Ay = Ay be a K-linear
isomorphism of K -algebras. Then there exists an element x € B* such that ¢(y) = z~'yz for
all y € Ay.

PROOF. Consider the simple K-algebra R := B®x A", and two R-module structures on the
K-vector space V underlying B: an element u ® a with u € B and a € A" operates either
as b — uba for all b € V| or as b — ubg(a) for all b € V. Hence there exists a 1) € GLg (V)
such that
b (uba) = wp(8)é(a)

for all u,b € B and all a € A;. One checks easily that (1) € B*: if u € B and u - (1) = 0,
then ¢ (u) = 0, hence u = 0.

Taking b = 1 = 1 in the displayed formula, we get 1(u) = ut(1) for all uw € B. Similarly
taking u =b =1 we get ¥ (a) = (1)¢(a) for all a € A;. We get ¢(1)¢(a) = ¥(a) = arp(1) for
all a € Ay, therefore ¢(a) = (1)1 -a-4(1) for every a € A;. [

(2.9) Theorem Let B be a K-algebra and let A be a finite dimensional central simple K-
subalgebra of B. Then the natural homomorphism o : A @k Zp(A) — B is an isomorphism.

PROOF. Passing from K to K*& we may and do assume that A = M, (K), and we fix an
isomorphism A = M, (K).

First we show that o is surjective. Given an element b € B, define elements b;; € B for
1<4,7<nby

n
b'ij = Z (S bejk N
k=1
where eg; € M, (K) is the n x n matrix whose (k,i)-entry is equal to 1 and all other entries
equal to 0. One checks that each b;; commutes with all elements of A = M,,(K). The following

computation

n

E bz‘j eij = E ekibejk eij = E eiibejj =b
,j=1 .5,k 1,J

shows that « is surjective.



Suppose that 0 = E;l,jzl bijeij, bij € Zp(A) for all 1 <4,j <n. Then

n n
0=> ew | Y bijei | emk = bumerr = bim
k=1 ij k=1

for all 0 <I,m < n. Hence « is injective. [

(2.10) Theorem Let B be a finite dimensional central simple algebra over a field K, and let
A be a simple K -subalgebra of B. Then Zp(A) is simple, and Zg(Zp(A)) = A.

PRrROOF. Let C' = Endg(A) = M, (K), where n = [A : K]. Inside the central simple K-algebra
B ®g C we have two simple K-subalgebras, A @ x K and K ®x A. Here the right factor of
K ®p A is the image of A in C' = Endg (A) under left multiplication. Clearly these two simple
K-subalgebras of B ® C are isomorphic, since both are isomorphic to A as a K-algebra.
By Noether-Skolem, these two subalgebras are conjugate in B ® ¢ C' by a suitable element of
(B @k C)*, therefore their centralizers (resp. double centralizers) in B @ C are conjugate,
hence isomorphic.

Let’s compute the centralizers first:
Zperc(A®k K)=7p(A) @k C,

while
ZB®KC(K QK A) = By A°PP.

Since B ®p A°PP is central simple over K, so is Zp(A) ®x C. Hence Zp(A) is simple.
We compute the double centralizers:

Zpeyxc(lpeyc(A®K K)) =Zpgrc(Zp(A) @k C) = Zp(Zp(A) @k K ,

while
Zpoxc(Zporc(K @K A)) = Lpgyo(B @k AP) = K @Kk A

So Zp(Zp(A)) is isomorphic to A as K-algebras. Since A C Zp(Zp(A)), the inclusion is an
equality. [

§3. Some invariants

(3.1) Lemma Let K be a field and let A be a finite dimensional simple K-algebra. Let M
be an (A, A)-bimodule. Then M is free as a left A-module.

PrROOF. We have A = M,,(D) for some division K-algebra D. To say that M is free means
that length (M) = 0 (mod n). Let Ag be the left A-module underlying A. Because A; is
isomorphic direct sum of n copies of the irreducible left A-module N := M,,1(D), we have

M==M®@yA; =2 (MesN)P™.

So length 4 (M) =0 (mod n). O



(3.2) Definition Let K be a field, B be a K-algebra, and let A be a finite dimensional
simple K-subalgebra of B. Then B is a free left A-module by Lemma 3.1. We define the
rank of B over A, denoted [B : A], to be the rank of B as a free left A-module. Clearly
[B: A] = dimg (B)/dimg (A) if dimg(A) < oo.

(3.3) Definition Let K be a field. Let B be a finite dimensional simple K-algebra, and let
A be a simple K-subalgebra of B. Let N be a left simple B-module, and let M be a left
simple A-module.

(i) Define i(B, A) := lengthp(B ®4 M), called the index of A in B.
(ii) Define h(B, A) := length 4(NN), called the height of B over A.
Here [B : A] denotes the A-rank of Bs, where By is the free left A-module underlying B.

(3.4) Lemma Notation as in Def. 3.3.

(i) lengthg(B ®4 U) =i(B, A)length 4 (U) for every left A-module U.
(i) length (V) = h(B, A) - lengthz (V') for every left B-module V.
(iii) lengthg(Bs) =i(B, A) - length 4(As).

) (

(iv) lengthy(B®a U) = [B: A -length 4 (U) for every left A-module U.

)
(v) [B: Al = h(B, A) - i(B, A)

PROOF. Statements (i), (ii) follow immediately from the definition. The statement (iii) follows
from (i) and the fact that By = B ®4 As. The statement (iv) holds for U = Ay from the
definition of [B : A], hence it hold for all left A-modules U. To show (v), we apply (iv) to a
simple A-module M and get

[B: A] = length (B ®4 M) = h(B, A)lengthg(B®4 M) = h(B,A)i(B,A).
Another proof of (iv) is to use the A-module A instead of a simple A-module M:
[B : A]length 4(As) = length 4 (Bs) = lengthp(Bs) h(B, A) = h(B, A)i(B, A) length 4 (As) .

The last equality follows from (iii). 0O

(3.5) Lemma Let A C B C C be inclusion of simple algebras over a field K. Then i(C, A) =
i(C,B)-i(B,A), h(C,A) =h(C,B)-h(B,A), and [C: A]=[C:B]-[B:A]. 0

(3.6) Lemma Let K be an algebraically closed field. Let B be a finite dimensional simple
K-algebra, and let A be a semisimple K-subalgebra of B. Let M be a simple A-module, and
let N be a simple B-module.

(i) N contains M as a left A-module.
(ii) The following equalities hold.

dimg (Homp(B ®4 M, N)) = dimg (Hom4 (M, N)) = dimg (Hom4 (N, M))
= dimg (Homp (N, Hom (B, M)))



(iii) Assume in addition that A is simple. Then i(B,A) = h(B,A).

PROOF. Statements (i), (ii) are easy and left as exercises. The statement (iii) follows from
the first equality in (ii). 0O

(3.7) Lemma Let A be a simple algebra over a field K. Let M be a non-trivial finitely
generated left A-module, and let A’ :== Ends(M). Then length (M) = length 4 (AL), where
Al is the left AL-module underlying A’.

PROOF. Write M = U", where U is a simple A-module. Then A’ = M, (D), where D :=
End4(U) is a division algebra. So length 4, (AL) = n = length4(M). O

(3.8) Proposition Let K be a field, B be a finite dimensional simple K -algebra, and let A
be a simple K-subalgebra of B. Let N be a non-trivial B-module. Then

(i) A" :=End4(N) is a simple K-algebra, and B' := Endg(N) is a simple K -subalgebra of
A

(i) i(A’,B") = h(B,A), and h(A’,B") = i(B, A).
PROOF. The statement (i) is easy and omitted. To prove (ii), we have
length 4 (N) = length 4, (AL) = i(A’, B') lengthg (B.),

where the first equality follows from Lemma 3.7 and the second equality follows from Lemma
3.4 (iii). We also have

length 4(N) = h(B, A)lengthg(N) = h(B, A) length, (B.)

where the last equality follows from Lemma 3.7. So we get i(A’, B') = h(B, A). Replacing
(B, A) by (A',B’), we get i(B,A) = h(A',B’). O

(3.9) Extending the method in , we can express the invariants i(B, A) and h(B, A) somewhat
more explicitly in terms of the basic invariants of B and A. Write

A =M, (D), B=M,(E)

where F is a central division algebra over K, and F is a central division algebra over a finite
extension field L/K. Let d> = dimy (D), e = dimg (F). Let M = D®™ N = E®" with their
natural module structure over M,,,(D) and M,,(F) respectively. The canonical isomorphism

Homp(B ®4 M,N) = Homyu (M, N)

gives us the equality
i(B,A)-e* =h(B,A)-d*-[L: K].

Together with (B, A) - h(B,A) =[B: A] = #&2:}(], we get
. n B [B: A]
i(B,A) = - h(B,A) = (njm)

In particular, m | n, and (n/m) | [B : A].



54. Centralizers

(4.1) Theorem Let K be a field. Let B be a finite dimensional central simple algebra over
K. Let A be a simple K -subalgebra of B, and let A" := Zp(A). Let L := ANA" =Z(A). Then
the following holds.

(i) A’ is a simple K -algebra.
i=2Zp(Zp(A)).
[B:A1=[A:K|,[B:A]=[A":K],[B:K]=[A:K]-[A":K].

(i

(iii

i) A
)

(iv) L=7Z(A) =7Z(A"); A and A’ are linearly disjoint over L.

(v) If A is a central simple algebras over K, then A®yx A’ = B.
)

(vi) For any non-trivial B-module N we have natural isomorphisms

Endp(N) @k A — EndZB(A)(N)y Endp(N) @k Zp(A) = End4(N).

Remark (1) Statements (i) and (ii) of Thm. 4.1 is the content of double centralizer theorem
2.10. The proof in 2.10 uses Noether-Skolem and the fact that the double centralizer of any
K-algebra A in Endg(A) is equal to itself. The proof in 4.1 relies on Prop. 3.8.

(2) Statement (v) of Thm. 4.1 is a special case of Thm. 2.9.

PROOF. Let N be a non-trivial left B-module. Let D := Endg(N). We have D C Endg () 2
B, and Z(D) =Z(B) = K. So D ®k A is a simple K-algebra, and we have

D®KA:>D-A§EndK(N)::C’

where D - A is the subalgebra of Endg(N) generated by D and A. We have B = M,,(R) for
some central division K-algebra R. Under this identification we can take N to be M, x1(R).
Then D = R°PP, operating naturally on M,,x1(R), and Z¢(D) = B. So we know one instance
of the double centralizer theorem; Z¢(Zc(B)) = B. We will leverage this one instance to
prove the general double centralizer theorem. We have

Zo(D - A) = Zo(D) N Za(A) = BN Zo(A) = A

Hence A’ = Endp.4(N) is simple, because D - A is simple. We have proved (i).
Apply Prop. 3.8 (ii) to the pair (D - A, D) and the D - A-module N. We get

[A:K]|=[D-A:D]=[B:A]
since Z¢(D) = B. On the other hand, we have
[B:A]-[A:K]=[B:K]=[B:A] - [A:K|]=[A:K]-[A": K|

so [B: A] = [A": K]. We have proved (iii).

Apply (i) and (iii) to the simple K-subalgebra A’ C B, we see that [A: K] = [Zg(A4’) : K],
so A=7Zp(Zp(A)) because A C Zp(A’). We have proved (ii).

Let L:=ANA =7Z(A) CZ(A") = Z(A). The last equality follows from (ii). The tensor
product A ®j, A’ is a central simple algebra over L since A and A’ are central simple over L.

So the canonical homomorphism A®jy A" — B is an injection. We have prove (iv). The above
inclusion is an equality if and only if L = K, because dimy(B) = [L: K|-[A: L]-[A": L].



We have seen in the proof of (i) that the centralizer of the image C' of Endp(N) ®x A in
Endg(N) is Zp(A). So C is equal to Endy,4)(IV). We have proved the first equality in (vi).
The second equality in (vi) follows. [

Remark (a) Theorem 4.1 (iii) is crucial in 4.3-4.6 below.
(b) One can also finish the proof of (vi) by dimension count, after having shown a natural
injection Endp(N) @ A" < End4(N). Let r = dimg (N). Then

o dimg(Enda(N)) = r?/dimg(A),

o dimg(Endg(N)) = r*/dim(B),

e dimg(A) = dimg (B)/dimg (A),
all by 4.1 (iii). So dimg (Endp(N) @k A’) = dimg (End4(N)).
(4.2) Corollary Notation as in 4.1. Let L := Z(A) = Z(Zg(A)). Then [A® Zp(A)] and
[B ®K L] are equal as elements of Br(L).

Proor. Take N = B, the left regular representation of B, in Thm. 4.1. The second equality
in 4.1 (vi) becomes

B @ Zp(A) = Enda(B;) & Mg 4 (AP)

because Bs is a free left A-module of rank [B : A]. Similarly the first equality in 4.1 (vi) reads
B @k A= Mgy, a)(Z(A)°PP). g

(4.3) Corollary Let A be a finite dimensional central simple algebra over a field K, and let
F be a subfield of A which contains K. Then F is a maximal subfield of A if and only if
[F:K]?=[A:K].

PRrROOF. Immediate from Thm. 4.1 (iii).

(4.4) Proposition Let D be a finite dimensional central division algebra over a field K.
Then D admits a mazimal subfield L with [L : K|?> = dimg (D) such that L is separable over
K. In particular D has a separable splitting field.

PRrROOF. Induction on dimg (D), use Proposition 2.7 and Theorem 4.1 (iii). 0O

Remark It is not true that every finite dimensional central simple algebra A over K has
subfield L with [L : K]? = dimg(A). The most obvious example is when K is algebraically
closed. Another similar example is when K D [, is separably closed and dim (A) is relatively
prime to p.

(4.5) Proposition Let A be a finite dimensional central simple algebra over K. Let F' be an
extension field of K such that [F : K] = n := [A : K|Y/2. Then there exists a K -linear ring
homomorphism F — A if and only if A®@g F = M, (F).



PrOOF. The “only if” part is contained in Lemma 2.6. It remains to show the “if” part.
Suppse that A @ F' = M, (F'). Choose a K-linear embedding « : F' — M,,(K). The central
simple algebra B := A @k M,,(K) over K contains Cy := A @ «(F) as a subalgebra, whose
centralizer in B is K ® g a(F). Since C; = M,,(F') by assumption, C contains a subalgebra
Cy which is isomorphic to M,,(K). By Noether-Skolem, Zp(C2) is isomorphic to A over K.
So we get F' = ZB(Cl) C ZB(CQ) ~A 0

(4.6) Corollary Let A be a central division algebra over K, and let F be a finite extension
field of K. Let n = dimg (A)'/2. The field F is a splitting field of A if and only if n | [F : K]
and F is a mazimal subfield of M,.(A), where r = [F : K|/n.

PROOF. By 4.5, it suffices to show that if F' is a splitting field of A, then n | [F': K]. But
then we have an action of A on F®" and n? = dimg (D) | dimg (F®) = n[F : K]. Therefore
n|[F: K] O

Remark Here is an equivalent form of 4.6, and a direct proof.

Let A be a central simple algebra over a field K, and let L be a splitting field of A.
Then there exists a central simple algebra A; in the same Brauer class of A which
has a mazimal subfield Ly isomorphic to L over K.

PROOF. Let dimg(A) =n?, d = [L : K]. By assumption we have
APP @ [ — %o My (L) L My(K) =: B
According to 4.1 (iv), Ay := Z¢o((j o @)(A°PP ® 1)) is a central simple algebra over K, in the

same Brauer class as A. Theorem 4.1 (iii) tells us that dimg (A1) = d*> = [L : K]2. Clearly
Ly :=(joa)(1® L) C Ay, so Ly is a maxmial subfield of 4;. [
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