

MATH 620 HOME WORK ASSIGNMENT 3

1. Let K be an imaginary quadratic field. For every $z \in K$ with $\text{Im}(z) > 0$, let L_z be the lattice $\mathbb{Z} + \mathbb{Z} \cdot z \subset \mathbb{C}$, and let E_z be the elliptic curve \mathbb{C}/L_z . Denote by $j(z) = j(E_z)$ the j -invariant of E_z .

(i) The ring of endomorphisms $\text{End}(E_z)$ of E_z is an order of \mathcal{O}_K , necessarily equal to $\mathbb{Z} + f\mathcal{O}_K$ for a unique $f \in \mathbb{N}_{>0}$. Show that $K(j(z))$ is the ring class field of K with conductor f , i.e. the abelian extension of K which corresponds to the subgroup

$$((\mathbb{Z} + f\mathcal{O}_K) \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}})^\times \cdot (K_\infty^\times \cdot K^\times) / (K_\infty^\times \cdot K^\times) \subset \mathbb{A}_K^\times / (K_\infty^\times \cdot K^\times)$$

under class field theory.

(ii) Let K^\dagger be the extension field of K generated by \mathbb{Q}^{cycl} and all elements of the form $j(z)$, with $z \in K$, $\text{Im}(z) > 0$. Describe the abelian extension K^\dagger of K using class field theory, and show that $\text{Gal}(K^{\text{ab}}/K^\dagger)$ is a product of groups of order 2.

2. Let k be a number field. Denote by ${}^k\mathfrak{S}$ the quotient of $\underline{k}^\times = \text{Res}_{k/\mathbb{Q}}\mathbb{G}_m$ such that

$$X^*({}^k\mathfrak{S}) = \{ \chi \in X^*(\underline{k}^\times) \mid (1 - \sigma)(1 + \iota)\chi = (1 + \iota)(1 - \sigma)\chi = 0, \quad \forall \sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \}$$

where ι denotes a complex conjugation. Prove that there exists a subgroup $\Gamma \subset \mathcal{O}_K^\times$ of finite index such that for every subgroup $\Gamma_1 \subset \Gamma$ of finite index, the quotient of \underline{k}^\times by the Zariski closure of Γ_1 is equal to ${}^k\mathfrak{S}$.

3. Let k be a number field. Recall that a \mathbb{C}^\times -valued algebraic Hecke character

$$\psi : \mathbb{A}_k/k^\times \rightarrow \mathbb{C}^\times$$

is a continuous character such that the restriction

$$\psi_{\infty,+} : \underline{k}_{\infty,+}^\times = (k \otimes_{\mathbb{Q}} \mathbb{R})_+^\times \rightarrow \mathbb{C}^\times$$

of ψ to the neutral component $\underline{k}_{\infty,+}$ of $\underline{k}_\infty = k \otimes_{\mathbb{Q}} \mathbb{R}$ coincides with the restriction to $\underline{k}_{\infty,+}$ of a character χ_ψ of \underline{k}^\times defined over \mathbb{C} ; sometimes χ_ψ is called the *infinity type* of ψ . Use the problem 2 above to show the following.

- (i) For every algebraic Hecke character ψ of \mathbb{A}_k^\times , the infinity component ψ_∞ factors through the quotient $\underline{k}^\times \twoheadrightarrow {}^k\mathfrak{S}$.
- (ii) If two algebraic Hecke characters ψ, ψ' have the same infinity component, then $\psi' \cdot \psi^{-1}$ has finite order.
- (iii) Every character of ${}^k\mathfrak{S}$ is the infinity component of an algebraic Hecke character of \mathbb{A}_k^\times .

4. We use the geometric normalization for the reciprocity law

$$\text{rec}_{\mathbb{Q}} : \mathbb{A}_{\mathbb{Q}}^{\times}/\mathbb{Q}^{\times} \rightarrow \text{Gal}(\mathbb{Q}^{\text{ab}}/\mathbb{Q}).$$

Let $\chi_{\text{cyc}} : \text{Gal}(\mathbb{Q}^{\text{ab}}/\mathbb{Q}) \rightarrow (\widehat{\mathbb{Z}})^{\times}$ be the cyclotomic character coming describing the action of $\text{Gal}(\mathbb{Q}^{\text{ab}}/\mathbb{Q})$ on the torsion points of \mathbb{G}_{m} .

(i) Show that $\chi_{\text{cyc}} \circ \text{rec}_{\mathbb{Q}}$ can be uniquely extended to an algebraic Hecke character

$$\psi_{\text{cyc}} : \mathbb{A}_{\mathbb{Q}}^{\times}/\mathbb{Q}^{\times} \rightarrow \widehat{\mathbb{Z}}^{\times} \times \mathbb{R}^{\times} \subset \mathbb{A}_{\mathbb{Q}}^{\times}$$

such that ψ_{cyc} is the product of a continuous homomorphism $c : \mathbb{A}_{\mathbb{Q}}^{\times} \rightarrow \mathbb{Q}^{\times}$ and a homomorphism $\mathbb{G}_{\text{m}}(\mathbb{A}_{\mathbb{Q}}) \rightarrow \mathbb{G}_{\text{m}}(\mathbb{A}_{\mathbb{Q}})$ coming from a character χ of \mathbb{G}_{m} .

(ii) Show that the restriction of ψ_{cyc} to \mathbb{Q}_p^{\times} is

$$\psi_{\text{cyc}}|_{\mathbb{Q}_p^{\times}} : a \mapsto (p^{-\text{ord}_p(a)}, p^{-\text{ord}_p(a)}a, p^{-\text{ord}_p(a)}) \in (\prod_{\ell \neq p} \mathbb{Z}_{\ell}^{\times}) \times \mathbb{Z}_p^{\times} \times \mathbb{R}^{\times}$$

and the restriction of ψ_{cyc} to \mathbb{R}^{\times} is

$$\psi_{\text{cyc}}|_{\mathbb{R}^{\times}} : a \mapsto (\text{sgn}(a), |a|) \in \widehat{\mathbb{Z}}^{\times} \times \mathbb{R}^{\times}$$

5. (This problem is due to Shimura-Taniyama.) Let C be the projective completion of the affine curve over \mathbb{Q} given by the equation $y^2 = x^p - 1$, where p is an odd prime number. Let $\mathbb{Q}(\mu_p)$ be the cyclotomic field generated by the p -th roots of unity, and let $\mathbb{Z}[\mu_p] = \mathcal{O}_{\mathbb{Q}(\mu_p)}$. There is an action of μ_p on C defined over \mathbb{Q}_p , given by

$$\zeta_p : (x, y) \rightarrow (\zeta_p x, y)$$

where ζ_p is a primitive p -th root of unity. This action gives an action of $\mathbb{Z}[\mu_p]$ on the Jacobian $\text{Jac}(C) =: A$ of C , so that A is an abelian variety with CM by $\mathbb{Z}[\mu_p]$.

- (i) Prove that the genus of C is $g = \frac{p-1}{2}$.
- (ii) Show that for $i = 1, \dots, g$, the meromorphic differential forms $\omega_i = \frac{x^{i-1} dx}{y}$ extends to regular differential forms on C and form a basis of $H^0(C, K_C)$.
- (iii) The Galois group $\text{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q})$ is canonically isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\times}$, and consists of elements

$$\sigma_i : \zeta_p \mapsto \zeta_p^i, \quad i \in (\mathbb{Z}/p\mathbb{Z})^{\times}$$

Show that the CM-type of A is equal to $\{\sigma_1, \dots, \sigma_g\}$ and that the reflex field is equal to $\mathbb{Q}(\mu_p)$.

- (iv) Deduce from the theory of complex multiplication that for every ideal $\mathfrak{a} \subset \mathbb{Z}[\mu_p]$, there exists an element $x \in \mathbb{Q}(\mu_p)$ such that $N\mu(\mathfrak{a}) = (x)$ and $\mathbf{N}(\mathfrak{a}) = x\bar{x}$, where $N\mu$ denotes the reflex type norm. Note that this is a special case of the Stickelberger relation, see Lang's *Algebraic Number Theory*, Chap. 4, §4, Theorem 11.