

MATH 620 HOME WORK ASSIGNMENT 2

Problems 1–3 below aims to clarify the linear algebra involved in the definition of the Shimura reflex field and the reflex type norm. Problem 4 contains the linear algebra used in the proof of the basic congruence result for abelian varieties with complex multiplication. In the application to complex multiplication, the field E is a CM field, and Φ is a CM-type. Problem 5 is the famous example of Mumford of Hodge cycles not spanned by divisor classes.

1. Let E be a number field, and let $\Phi \subset \text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}})$ be a subset of embeddings of E into an algebraic closure $\overline{\mathbb{Q}}_\ell$ of \mathbb{Q} . Let $\underline{E}^\times = \text{Res}_{E/\mathbb{Q}}(\mathbb{G}_m)$. The characters group of \underline{E}^\times is naturally the free abelian group with basis $\{\chi_\sigma : \sigma \in \text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}})\}$, where χ_σ is the character of \underline{E}^\times whose restriction to $E^\times = \underline{E}^\times(\mathbb{Q})$ coincides with the restriction of $\sigma : E \rightarrow \mathbb{Q}$ to E^\times . The natural action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $\text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}})$ is compatible with the action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $X^*(\underline{E}^\times)$. Let $\mu_\Phi : \mathbb{G}_m \rightarrow \underline{E}^\times$ be the cocharacter of \underline{E}^\times such that

$$\langle \chi_\sigma, \mu_\Phi \rangle = \begin{cases} 1 & \text{if } \sigma \in \Phi \\ 0 & \text{if } \sigma \notin \Phi \end{cases}$$

under the pairing between the $X^*(\underline{E}^\times)$ and $X_*(\underline{E}^\times)$, for every $\sigma \in \text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}})$.

- (a) Let $\text{Stab}_{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\Phi)$ be the open subgroup of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ which stabilizes the subset $\Phi \subseteq \text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}})$. Show that the field of definition $F(\Phi)$ of μ_Φ is the fixed subfield of $\text{Stab}_{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\Phi)$ in $\overline{\mathbb{Q}}$.
- (b) Let F be a number field. Show that the \mathbb{Q} -torus $\text{Res}_{F/\mathbb{Q}}(\underline{E}^\times)$ is naturally isomorphic to

$$\underline{(E \otimes_{\mathbb{Q}} F)^\times} = \text{Res}_{E \otimes_{\mathbb{Q}} F/\mathbb{Q}}(\mathbb{G}_m).$$

- (c) Show that $X^*(\underline{(E \otimes_{\mathbb{Q}} F)^\times})$ is the free abelian group with bases

$$\{ \chi_{\sigma, \tau} : \sigma \in \text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}}), \tau \in \text{Hom}_{\text{alg}}(F, \overline{\mathbb{Q}}) \},$$

where $\chi_{\sigma, \tau}$ is the character of $\underline{(E \otimes_{\mathbb{Q}} F)^\times}$ whose restriction to the rational points $(E \otimes_{\mathbb{Q}} F)^\times$ of the torus $\underline{(E \otimes_{\mathbb{Q}} F)^\times}$ is induced by

$$\sigma \cdot \tau : E \otimes_{\mathbb{Q}} F \xrightarrow{\sigma \otimes \tau} \overline{\mathbb{Q}} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} \xrightarrow{\text{mult}} \overline{\mathbb{Q}}.$$

Moreover the action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $X^*(\underline{(E \otimes_{\mathbb{Q}} F)^\times})$ comes from the diagonal action of the Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $\text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}}) \times \text{Hom}_{\text{alg}}(F, \overline{\mathbb{Q}})$.

2. Keep the notations in Problem 1. above. Let $F = F(\Phi)$, and let

$$\text{Res}_{F/\mathbb{Q}}(\mu_\Phi) : \underline{F^\times} = \text{Res}_{F/\mathbb{Q}}(\mathbb{G}_m) \rightarrow \text{Res}_{F/\mathbb{Q}}(\underline{E^\times}) = \underline{(E \otimes_{\mathbb{Q}} F)^\times}$$

be the \mathbb{Q} -rational homomorphism obtained by applying the functor $\text{Res}_{F/\mathbb{Q}}$ to the cocharacter μ_Φ , which is defined over F . Show that the map from $X^*((\underline{E \otimes_{\mathbb{Q}} F})^\times)$ to $X^*(\underline{F^\times})$ induced by $\text{Res}_{F/\mathbb{Q}}(\mu_\Phi)$ is

$$\chi_{\sigma, \tau} \mapsto \begin{cases} \chi_\tau & \text{if } \sigma \in \tau \cdot \Phi \\ \mathbf{1} & \text{if } \sigma \notin \tau \cdot \Phi \end{cases} \quad \begin{array}{ll} \forall \sigma \in \text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}}), & \forall \tau \in \text{Hom}_{\text{alg}}(F, \overline{\mathbb{Q}}). \end{array}$$

Notice that the $\tau \cdot \Phi$ is a well-defined subset of $\text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}})$, since the fixer of F in $\overline{\mathbb{Q}}$ is the stabilizer subgroup of Φ in $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

3. Notations as above. Consider the standard representation of E^\times on E as a \mathbb{Q} -rational linear representation of $\underline{E^\times}$. The weights of this representation are the characters χ_τ of $\underline{E^\times}$, $\tau \in \text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}})$, and each weight space V_{χ_τ} is one-dimensional. The direct sum

$$\bigoplus_{\sigma \in \Phi} V_{\chi_\sigma}$$

is a subrepresentation of the standard representation of E , and is defined over F . In other words, there is a unique F -linear subspace $M = M(\Phi) \subset E \otimes_{\mathbb{Q}} F$, which is stable under E^\times , such that $M \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} = \bigoplus_{\sigma \in \Phi} V_{\chi_\sigma}$. There is a natural structure on M as an $(E \otimes_{\mathbb{Q}} F)$ -module.

(a) The $(E \otimes_{\mathbb{Q}} F)$ -module M defines a \mathbb{Q} -rational representation of $\underline{(E \otimes_{\mathbb{Q}} F)^\times}$, of dimension $\text{Card}(\Phi) \cdot [F : \mathbb{Q}]$. Show that the weights of this representation are

$$\{ \chi_{\sigma, \tau} \mid \sigma \in \text{Hom}_{\text{alg}}(E, \overline{\mathbb{Q}}), \tau \in \text{Hom}_{\text{alg}}(F, \overline{\mathbb{Q}}), \sigma \in \tau \Phi \},$$

and each weight space is one-dimensional.

(b) We have two \mathbb{Q} -rational homomorphisms from $\underline{(E \otimes_{\mathbb{Q}} F)^\times}$. On the one hand, we have the composition

$$\text{Nm}_\Phi : \underline{F^\times} = \text{Res}_{F/\mathbb{Q}}(\mathbb{G}_m) \xrightarrow{\text{Res}_{F/\mathbb{Q}}(\mu_\Phi)} \text{Res}_{F/\mathbb{Q}}(\underline{E^\times}) \xrightarrow{\text{Nm}_{F/\mathbb{Q}}} \underline{E^\times},$$

where the second arrow is the F/\mathbb{Q} -norm for the torus $\underline{E^\times}$. On the other hand, multiplication by elements of F^\times are E -linear automorphisms of M . Taking the E -linear determinant gives a \mathbb{Q} -rational homomorphism

$$\det_{M, E} : \underline{F^\times} \rightarrow \underline{E^\times}$$

of tori. Prove that these two homomorphisms are equal.

4. Let p be a prime number, and let \mathfrak{P} be a prime ideal of \mathcal{O}_F lying above p . Let $M_{\mathbb{Z}}$ be a \mathbb{Z} -lattice in M which is stable under multiplication by $\mathcal{O}_E \times_{\mathbb{Z}} \mathcal{O}_F$. The quotient module $M_{\mathbb{Z}}/\mathfrak{P}M$ is an Artinian \mathcal{O}_E -module; denote by $\chi_{\mathcal{O}_E}(\chi(M/\mathfrak{P}M))$ its “Euler characteristic” as defined in *Corps Locaux*, Chap. I, §5. (See Chap. I, §5 and Chap. III, §1 for some basic properties of this Euler characteristic.) Prove the following equality

$$\chi_{\mathcal{O}_E}(M/\mathfrak{P}M) = N\mu_{\Phi}(\mathfrak{P}) = \det_{M,E}(\mathfrak{P})$$

of \mathcal{O}_E -modules.

5. Suppose that K is a CM field with $[K : \mathbb{Q}] = 8$, such that the Galois group $\text{Gal}(L/\mathbb{Q})$ of the Galois closure L of K is isomorphic to the group of all rigid symmetries of a cube $C \in \mathbb{R}^3$, and $\text{Gal}(L/K)$ corresponds to the stabilizer of a vertex of the cube C . The Galois group $\text{Gal}(L/\mathbb{Q})$ is isomorphic to $S_4 \times \mu_2$; the complex conjugation, corresponding to $(1, -1) \in S_4 \times \mu_2$, induces the antipodal map about the center of the cube C . Let Φ be the set of embeddings of K into \mathbb{C} corresponding to the four vertices of a chosen face of C ; Φ is a CM-type for Φ . Let (A, α, K, Φ) be an 8-dimensional abelian variety with multiplication $\alpha : K \rightarrow \text{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$ by K of CM-type Φ .

- (a) Determine the Mumford-Tate group $\text{sMT}(\text{H}_1(A(\mathbb{C}), \mathbb{Q}))$.
- (b) Determine the dimension of the Hodge cycles in $\wedge^4(\text{H}_1(A(\mathbb{C}), \mathbb{Q}))(-2)$ and the dimension of the linear span of products of divisor classes in $\wedge^4(\text{H}_1(A(\mathbb{C}), \mathbb{Q}))(-2)$.
- (c) Determine the dimension of the largest subgroup of $\text{GL}(\text{H}_1(A(\mathbb{C}), \mathbb{Q}))$ which fixes all divisor classes in self-products $A \times \cdots \times A$ of A .
- (d) By varying the CM-type Φ , what are the possible dimensions of the resulting Mumford-Tate group?

6. Determine the dimension of the Mumford-Tate group of an abelian variety with complex multiplication by a CM field K such that the Galois group $\text{Gal}(L/\mathbb{Q})$ of the Galois closure of K is isomorphic to the group of all symmetries of a regular icosahedron, the stabilizer subgroup of a vertex corresponds to $\text{Gal}(L/K)$, and the CM-type Φ corresponding to the subset consisting of a vertex v and the five vertices adjacent to v .

7. Let E be a totally real number field. Suppose that $h : \mathfrak{S} \rightarrow \underline{E}^{\times}$ is a \mathbb{Q} -rational homomorphism from the Serre group \mathfrak{S} to \underline{E}^{\times} . Prove that h factors through the embedding $\mathbb{G}_m \rightarrow \underline{E}^{\times}$.