Semisimplicity and radical
Jacobson density theorem
M : semisimple left R-module, $D=\operatorname{End}_{R}(M), \quad \phi \in \operatorname{End}_{D}(M)$
\forall finite sequence $x_{1}, \ldots, x_{n} \in M, \quad \forall \alpha \in R$ st. $\alpha\left(x_{i}\right)=\phi\left(x_{i}\right)$ for $i=1 \ldots, n$ In other words, the image \bar{R} of R in $\operatorname{End}_{D}(M)$ is a dense sulking of End (M) for the "operator topology" on End (M), generated by the following family of open subsets

$$
\left\{U_{\left(a_{1}, \ldots, a_{m} ; b_{1}, \cdots, b_{m}\right)}\right\}_{\substack{m \in \mathbb{N} \\ a_{i}, b_{i} \in M}} U_{\left(a_{0}, \cdots, a_{n j} ; b_{i}, b_{m}\right)}=\left\{f \in E E_{j}(M) \mid f\left(a_{i}\right)=b_{i} \forall_{i=1}, \cdots, m\right\}
$$

Rok: The version usually seen is the case when M is a simple R-module Then $D=E n d_{R}(M)$ is a division sing. M is a left vector space over D, End (M) is the ring of all D-linear operators on M. The density theorem says that the image of R in $\operatorname{End}_{D}(M)$ is a dense sulking of End $d_{D}(M)$.

Two definitions of (simple and) semisimple rings
A. Bourbaki's definition (which we will follow):

A ring R is semi-simple if R is a semisimple left R-module
$\iota_{R_{s}}$ in Boustacki's notation
A ring R is simple if it is semisimple and has exactly one
Ra right isomorphism class of simple lift R-modules
Proposition 2 (consequence of this definition of semi-simplicity)
Let R be a semisimple ring (in the sense of Bourbaki)
(1) Every left R-module is semisimple - easy $R=$ \{L\} $T_{i \in I}$ Li:sinhte kef
 such that every simple left R-module is isomorphic to one of $\left\{L_{1}, \ldots, L_{m}\right\}$
(3) For $i=1, \ldots, m$, let $R_{i}=\sum_{I=s i n m p l e l e f t}$. Then R_{i} is a two -sided ileal.

(4) $\exists e_{i} \in R_{i}, i=1, \ldots, m$. such that $e_{1}+\cdots+e_{m}=1, e_{i} \cdot e_{j}=0$ if $i \neq j, e_{i}^{2}=e_{i} \forall_{i}$ $R_{i}=e_{i} R e_{i}$ is a ring, and $R \cong R_{1} \times \cdots \times R_{m}$ as a product ring
$k:$ a field. $M=\bigoplus_{\mathbb{N}} k$
$R_{\text {OH }}=a \cdot$ doubly transitive subalg. of $\operatorname{End}_{k}(M)$ End $\operatorname{ER}_{k}(M)$,
cloubly transitive

$$
\begin{aligned}
& \forall \quad \forall, v \in M, \quad k-l i n \text { indep } \\
& \forall u^{\prime}, v \in M \\
& \exists \alpha \in R \text { s.t. } \quad \alpha(u)=u^{\prime} \\
& \\
& \quad \alpha(v)=v^{\prime}
\end{aligned}
$$

Exer-a)Such a subving exist!
b) M is a smple R-modul, and $\operatorname{End}(M)=k$
Examples of semismple rings:

1) V - finite dim veetor space $/ k=$ a fiell

$$
T \in \operatorname{End}_{k}(V) \leadsto k_{k}[T] \subseteq \operatorname{End}_{k}(V)
$$

G V
$k[x] /\left(\min _{f(x)}\right.$ poly $\left.\left.\operatorname{l}, T\right)\right]$ is semisimple
$f(x)=a$ product of muituclly
monic distinct monir irred. polynomials.
2) $G=$ a finite group k : a Field.
$k[G]$ is semismple

$$
\begin{array}{ll}
\Longleftrightarrow 1_{k} \cdot \# G \in f_{k}^{k} & \Leftrightarrow \text { using } \int_{G} \\
& \Longleftrightarrow \text { ever }
\end{array}
$$

When $\left.k=\mathbb{C}: \quad k[G] \cong \prod_{i \in I} M_{n_{i}}(k)\right]$
or, k alg. closed

$$
\text { or, } k \text { alg. closed } \quad i \in I \text {. }
$$

$$
\# G \cdot 1_{k} \neq 0 \mathrm{~m} k
$$

$$
k[G] \cong \prod_{i \in I} M_{n_{i}}\left(l_{2}\right)
$$

$\{$ iso classes of irred. . k -linear. $\}$

$$
\left(P_{i}, T_{i}\right) \text { irred. }
$$

\leadsto Every simple module is $\quad n_{i}=\operatorname{dim} V_{i}$

k not algebraically closed. $\# 6 \cdot 1_{k} \in k_{k}^{x}$
$\left.k_{k}[G] \cong \prod_{i \in I} M_{n_{i}}\left(D_{i}\right) \frac{\text { Example }}{1}\right) D_{i}$ is a field $\neq k$ $i \in I_{k}$

1) $k=\mathbb{Q}, \quad G=\mathbb{Z} / 3 \mathbb{Z} . \quad l_{k}[G] \cong P_{k}[x] /\left(X^{3}-1\right) \cong k_{k} \times l_{k}[x, k)$

(5) Each R_{i} is a simple ring.

Proposition 3 Let R be a simple ring and let L be a simple left ideal Let $D=\operatorname{End}_{R}(L)$, and $R \cong L^{\oplus r}$ as left R-modules. Then $\operatorname{dim}_{D}(L)=r$ and $R \cong$ End $_{D}(L) \cong M_{r}\left(D^{\text {OPP }}\right)$.

Rink: The key is $\operatorname{End}_{R}\left(L^{\oplus r}\right) \cong \operatorname{End} d_{R}\left(R_{s}\right)=R^{\text {opp }}$

$$
M_{r}^{I / S}(D)
$$

Corollary 4. Every semisimple ring is Artinian.
B. Ring theorists' definition of semisimple rings and radicals
(B1) The radical $\operatorname{Rad}(M)$ of a left R-module M is

$$
\operatorname{Rad}(M)=\bigcap_{\substack{N \subseteq M \text { submodule } \\ M / N}} N
$$

(B2) The radical Rad(R) of a ring R is

$$
\operatorname{Rad}(R)=\bigcap_{\substack{\text { Mi simple } \\ \text { left } R-\text { module }}} A_{n n_{R}}(M)=\bigcap_{\substack{M=\text { semisisinple } \\ \text { left R-Module }}}^{\sigma} A_{R}(M)
$$

Ring theorists say a ring is semisimple if its radical is 0 . Relation between the two notions
R is semisimple following Bourbaki $\Leftrightarrow R \cong \prod_{i=1}^{m} M_{n_{i}}\left(D_{i}\right) \quad D_{i}=\begin{gathered}\text { division } \\ \text { algebra }\end{gathered}$ \Downarrow
$\operatorname{Rad}(R)=(0) \Longleftrightarrow \exists$ injective ring homomorphism

$$
c: R \longleftrightarrow \prod_{i \in I} R_{i}
$$

st.

$$
P_{i} \circ L: R \rightarrow R_{i}
$$

is surjective $\forall i \in I$
$I=$ indexing set $D_{i}=$ division ring $\forall i \in I$ V_{i} : left D_{i}-modules $R_{i} \subseteq E_{n d_{i}}\left(T_{i}\right)$ doubly transitive subring

By def', $R_{i} \leq E_{D_{p}}\left(V_{i}\right)$ is doubly transitive if $\forall u, v \in V_{i}$. linearly indep. over $V_{i}, \quad \forall u^{\prime}, v^{\prime} \in V_{i}, \exists \alpha \in R_{i}$ s.t. $\begin{aligned} & \alpha(u)=u^{\prime}, \\ & \alpha(v)=v^{\prime}\end{aligned}$

Properties of radicals.
Lemmas (i) \forall non-zero R-module M of finite type. $\operatorname{Rad}(M) \varsubsetneqq M$
(ii) $f: M \longrightarrow M^{\prime \prime} \quad R$-linear $\Rightarrow f(\operatorname{Rad}(M)) \subseteq \operatorname{Rad}\left(M^{\prime \prime}\right)$
(iii) $N \subseteq M \Rightarrow \operatorname{Rad}(N) \subseteq \operatorname{Rad}(M)$

$$
\operatorname{Rad}(M / N) \supseteq \operatorname{Rad}(M)+N / N \quad\binom{\Rightarrow \operatorname{Rad}(M / N)=\operatorname{Rad}(M) / N}{\text { if } N \subseteq \operatorname{Rad}(M)}
$$

(iv) $\operatorname{Rad}(M)=$ the smallest R-submobule N st. $\operatorname{Rad}(M / N)=0$
(v) If M is of finite type, $N \subseteq M \quad R$-submodule and $M=N+r a d(M)$, then $N=M$
(Consequence of (i) and (iii) - conoder M / N; analog of,
(vi) $\operatorname{Rad}\left(\prod_{i \in I} M_{i}\right) \subseteq \prod_{i \in I} \operatorname{Rad}\left(M_{i}\right), \quad \operatorname{Rad}\left(\oplus_{i \in I} M_{i}\right)=\bigoplus_{i \in I} \operatorname{Rad}\left(M_{i}\right) \quad$ Naleayama's Lemma $)$

Prop. 6 M: R-module with a finest set of generators x_{1}, \ldots, x_{n}
$y \in M$ Then $y \in \operatorname{Rad}(M) \Longleftrightarrow \forall a_{1}, \ldots, a_{n} \in R$

$$
\sum_{i=1}^{n} R \cdot\left(x_{i}+a_{i} y\right)=M
$$

Lemma 7. M - R-module
$\operatorname{Rad}(M)=0 \Longleftrightarrow \exists$ simple R-modules $M_{i} \quad$ it $I<$ possibly and an infective R-linear map

$$
M \longleftrightarrow \prod_{i \in I} M_{i}
$$

