
Notes on semisimple algebras

§1. Semisimple rings

(1.1) Definition A ring R with 1 is semisimple, or left semisimple to be precise, if the free
left R-module underlying R is a sum of simple R-module.

(1.2) Definition A ring R with 1 is simple, or left simple to be precise, if R is semisimple
and any two simple left ideals (i.e. any two simple left submodules of R) are isomorphic.

(1.3) Proposition A ring R is semisimple if and only if there exists a ring S and a semisim-
ple S-module M of finite length such that R ∼= EndS(M)

(1.4) Corollary Every semisimple ring is Artinian.

(1.5) Proposition Let R be a semisimple ring. Then R is isomorphic to a finite direct
product

∏s
i=1 Ri, where each Ri is a simple ring.

(1.6) Proposition Let R be a simple ring. Then there exists a division ring D and a positive
integer n such that R ∼= Mn(D).

(1.7) Definition Let R be a ring with 1. Define the radical of R to be the intersection of
all maximal left ideals of R. The above definitions uses left R-modules. When we want to
emphasize that, we say that n is the left radical of R.

(1.8) Proposition The radical of a semisimple ring is zero.

(1.9) Proposition Let R be a simple ring. Then R has no non-trivial two-sided ideals, and
its radical is zero.

(1.10) Proposition Let R be an Artinian ring whose radical is zero. Then R is semisimple.
In particular, if R has no non-trivial two-sided ideal, then R is simple.

(1.11) Remark In non-commutative ring theory, the standard definition for a ring to be
semisimple is that its radical is zero. This definition is different from Definition 1.1, For
instance, Z is not a semisimple ring in the sense of Def. 1.1, while the radical of Z is zero. In
fact the converse of Prop. 1.10 holds; see Cor. 1.4 below.

(1.12) Exercise. Let R be a ring with 1. Let n be the radical of R

(i) Show that there exists a maximal left ideal in R. Deduce that the radical of R is a
proper left ideal of R. (Hint: Use Zorn’s Lemma.)

(ii) Show that n ·M = (0) for every simple left R-module M . (Hint: Show that for every
0 6= x ∈ M , the set of all elements y ∈ R such that y · x = 0 is a maximal left ideal of
R.)

(iv) Suppose that I is a left ideal of R such that I ·M = (0) for every simple left R-module
M . Prove that I ⊆ n.
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(v) Show that n is a two-sided ideal of R. (Hint: Use (iv).)

(vi) Let I be a left ideal of R such that In = (0) for some positive integer n. Show that
I ⊆ n.

(vi) Show that the radical of R/n is zero.

(1.13) Exercise. Let R be a ring with 1 and let n be the (left) radical of R.

(i) Let x ∈ n. Show that R · (1 + x) = R, i.e. there exists an element z ∈ R such that
z · (1 + x) = 1.

(ii) Suppose that J is a left ideal of R such that R · (1 + x) = R for every x ∈ J . Show that
J ⊆ n. (Hint: If not, then there exists a maximal left ideal m of R such that J +m 3 1.)

(iii) Let x ∈ n, and let z be an element of R such that z · (1 + x) = 1. Show that z − 1 ∈ n.
Conclude that 1 + n ⊂ R×.

(iv) Show that the n is equal to the right radical of R. (Hint: Use the analogue of (i)–(iii)
for the right radical.)

§2. Simple algebras

(2.1) Proposition Let K be a field. Let A be a central simple algebra over K, and let B be
simple K-algebra. Then A ⊗K B is a simple K-algebra. Moreover Z(A ⊗K B) = Z(B), i.e.
every element of the center of A⊗K B has the form 1⊗ b for a unique element b ∈ Z(B). In
particular, A⊗K B is a central simple algebra over K if both A and B are.

Proof. We assume for simplicity of exposition that dimK(B) < ∞; the proof works for the
infinite dimensional case as well. Let b1, . . . , br be a K-basis of B. Define the length of an
element x =

∑r
i=1 ai ⊗ bi ∈ A⊗B, ai ∈ A for i = 1, . . . , r, to be Card{ i | ai 6= 0 }.

Let I be a non-zero ideal in A⊗K B. Let x be a non-zero element of I of minimal length.
After relabelling the bi’s, we may and do assume that x has the form

x = a1 ⊗ b1 +
s∑
i=2

ai ⊗ bi ,

and a1, . . . , as are all non-zero. Since a1 6= 0 and A is simple, there exist elements u1, u2, . . . , uh
and v1, v2, . . . , vh in A such that

∑h
j=1 uj a1 vj = 1. Consider the element

y =
h∑
j=1

(uj ⊗ 1) · x · (vj ⊗ 1) ∈ I .

We have

y = 1⊗ b1 +
s∑
i=2

a′i ⊗ bi

where a′i =
∑h

j=1 uj · ai · vj for j = 2, . . . , s. Clearly y 6= 0 and its is at most s. So y has
length s and a′i 6= 0 for i = 2, . . . , s. Consider the element [a ⊗ 1, y] ∈ I with a ∈ A, whose
length is strictly less than s. Therefore [a⊗ 1, y] = 0 for all a ∈ A, i.e. [a, a′i] = 0 for all a ∈ A
and all i = 2, . . . , s. In other words, a′i ∈ K for all i = 2, . . . , s. Write a′i = λi ∈ K, and
y = 1⊗ b ∈ I, where b = b1 + λ2b2 + · · ·λsbs ∈ B, b 6= 0. So 1⊗BbB ⊆ I. Since B is simple,
we have BbB = B and hence I = A⊗K B. We have shown that A⊗K B is simple.
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Next we prove that Z(A⊗K B) = K. Let x =
∑r

i=1 ai⊗ bi be any element of Z(A⊗K B),
with a1, . . . , ar ∈ A. We have

0 = [a⊗ 1, x] =
r∑
i=1

[a, ai]⊗ bi

for all a ∈ A. Hence ai ∈ Z(A) = K for each i = 1, . . . , r, and x = 1⊗ b for some b ∈ B. The
condition that 0 = [1⊗ y, x] for all y ∈ B implies that b ∈ Z(B) and hence x ∈ 1⊗ Z(B).

(2.2) Corollary Let A be a finite dimensional algebra over a field K, and let n = dimK(A).
If A is a central simple algebra over K, then

A⊗K Aopp ∼−→ EndK(A) ∼= Mn(K) .

Conversely, if A⊗K Aopp � EndK(A), then A is a central simple algebra over K.

Proof. Suppose that A is a central simple algebra over K. By Prop. 2.1, A ⊗K Aopp is a
central simple algebra over K. Consider the map

α : A⊗K Aopp → EndK(A)

which sends x ⊗ y to the element u 7→ xuy ∈ EndK(A). The source of α is simple by Prop.
2.1, so α is injective because it is clearly non-trivial. Hence it is an isomorphism because the
source and the target have the same dimension over K.

Conversely, suppose that A ⊗K Aopp � EndK(A) and I is a proper ideal of A. Then the
image of I ⊗ Aopp in EndK(A) is an ideal of EndK(A) which does not contain IdA. so A
is a simple K-algebra. Let L := Z(A), then the image of the canonical map A ⊗K Aopp in
EndK(A) lies in the subalgebra EndL(A), hence L = K.

(2.3) Lemma Let D be a finite dimensional central division algebra over an algebraically
closed field K. Then D = K.

(2.4) Corollary The dimension of any central simple algebra over a field is a perfect square.

(2.5) Lemma Let A be a finite dimensional central simple algebra over a field K. Let F ⊂ A
be an overfield of K contained in A. Then [F : K] | [A : K]1/2. In particular if [F : K]2 =
[A : K], then F is a maximal subfield of A.

Proof. Write [A : K] = n2, [F : K] = d. Multiplication on the left defines an embedding
A ⊗K F ↪→ EndF (A). By Lemma 3.1, n2 = [A⊗K : F ] divides [EndF (A) : F ] = (n2/d)2, i.e.
d2 | n2. So d divides n.

(2.6) Lemma Let A be a finite dimensional central simple algebra over a field K. If F is a
subfield of A containing K, and [F : K]2 = [A : K], then F is a maximal subfield of K and
A⊗K F ∼= Mn(F ), where n = [A : K]1/2.

Proof. We have seen in Lemma 2.5 that F is a maximal subfield of A. Consider the natural
map α : A ⊗K F → EndK(A), which is injective because A ⊗K F is simple and α is non-
trivial. Since the dimension of the source and the target of α are both equal to n2, α is an
isomorphism.
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(2.7) Proposition Let D be a non-commutative central division algebra over a field K, There
exists an element u /∈ K which is separable over K.

Proof. Suppose that every element u /∈ K is purely inseparable over K. Clearly K is
infinite. The assumption implies that the minimial polynomial of every element of D has the
form T p

i − a for some i ∈ N and some a ∈ K. Moreover pi ≤ dimK(D)1/2. So there exists an

integer N such that xp
N ∈ K for all x ∈ D. Therefore [xp

N
, y] = 0 for all x, y ∈ D.

Let D be the affine K-scheme such that D(L) = D ⊗K L for every extension field L/K.
There is a K-morphism

f : D ×Spec(K) D → D

such that f(x, y) = [xp
N
, y] for all extension field L/K and all x, y ∈ D(L). We know that this

morphism is zero on the dense subset D(K)×D(K), hence f is the zero morphism. The last
statement is impossible, for D(Kalg) ∼= Mr(L

alg) with r = dimK(D)1/2 > 0 and the equality

[xp
N
, y] = 0 for all x, y ∈ Mr(L

alg) is absurd.

(2.8) Theorem (Noether-Skolem) Let B be a finite dimensional central simple algebra
over a field K. Let A1, A2 be simple K-subalgebras of B. Let φ : A1

∼−→ A2 be a K-linear
isomorphism of K-algebras. Then there exists an element x ∈ B× such that φ(y) = x−1yx for
all y ∈ A1.

Proof. Consider the simple K-algebra R := B⊗KAopp
1 , and two R-module structures on the

K-vector space V underlying B: an element u ⊗ a with u ∈ B and a ∈ Aopp
1 operates either

as b 7→ uba for all b ∈ V , or as b 7→ ubφ(a) for all b ∈ V . Hence there exists a ψ ∈ GLK(V )
such that

ψ(uba) = uψ(b)φ(a)

for all u, b ∈ B and all a ∈ A1. One checks easily that ψ(1) ∈ B×: if u ∈ B and u · ψ(1) = 0,
then ψ(u) = 0, hence u = 0. Then φ(a) = ψ(1)−1 · a · ψ(1) for every a ∈ A1.

(2.9) Theorem Let B be a K-algebra and let A be a finite dimensional central simple K-
subalgebra of B. Then the natural homomorphism α : A⊗K ZB(A)→ B is an isomorphism.

Proof. Passing from K to Kalg, we may and do assume that A ∼= Mn(K), and we fix an
isomorphism A

∼−→ Mn(K).

First we show that α is surjective. Given an element b ∈ B, define elements bij ∈ B for
1 ≤ i, j ≤ n by

bij :=

n∑
k=1

eki b ejk ,

where eki ∈ Mn(K) is the n × n matrix whose (k, i)-entry is equal to 1 and all other entries
equal to 0. One checks that each bij commutes with all elements of A = Mn(K). The following
computation

n∑
i,j=1

bij eij =
∑
i,j,k

eki b ejk eij =
∑
i,j

eii b ejj = b

shows that α is surjective.
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Suppose that 0 =
∑n

i,j=1 bijeij , bij ∈ ZB(A) for all 1 ≤ i, j ≤ n. Then

0 =
n∑
k=1

ekl

∑
i,j

bijeij

 emk =

n∑
k=1

blmekk = blm

for all 0 ≤ l,m ≤ n. Hence α is injective.

(2.10) Theorem Let B be a finite dimensional central simple algebra over a field K, and let
A be a simple K-subalgebra of B. Then ZB(A) is simple, and ZB(ZB(A)) = A.

Proof. Let C = EndK(A) ∼= Mn(K), where n = [A : K]. Inside the central simple K-algebra
B ⊗K C we have two simple K-subalgebras, A ⊗K K and K ⊗K A. Here the right factor of
K⊗KA is the image of A in C = EndK(A) under left multiplication. Clearly these two simple
K-subalgebras of B ⊗K C are isomorphic, since both are isomorphic to A as a K-algebra.
By Noether-Skolem, these two subalgebras are conjugate in B ⊗K C by a suitable element of
(B ⊗K C)×, therefore their centralizers (resp. double centralizers) in B ⊗K C are conjugate,
hence isomorphic.

Let’s compute the centralizers first:

ZB⊗KC(A⊗K K) = ZB(A)⊗K C ,

while
ZB⊗KC(K ⊗K A) = B ⊗K Aopp .

Since B ⊗K Aopp is central simple over K, so is ZB(A)⊗K C. Hence ZB(A) is simple.

We compute the double centralizers:

ZB⊗KC(ZB⊗KC(A⊗K K)) = ZB⊗KC(ZB(A)⊗K C) = ZB(ZB(A)⊗K K ,

while
ZB⊗KC(ZB⊗KC(K ⊗K A)) = ZB⊗KC(B ⊗K Aopp) = K ⊗K A

So ZB(ZB(A)) is isomorphic to A as K-algebras. Since A ⊆ ZB(ZB(A)), the inclusion is an
equality.

§3. Some invariants

(3.1) Lemma Let K be a field and let A be a finite dimensional simple K-algebra. Let M
be an (A,A)-bimodule. Then M is free as a left A-module.

Proof. We have A ∼= Mn(D) for some division K-algebra D. To say that M is free means
that lengthA(M) ≡ 0 (mod n). Let As be the left A-module underlying A. Because As is
isomorphic direct sum of n copies of the irreducible left A-module N := Mn×1(D), we have

M ∼= M ⊗A As ∼= (M ⊗A N)⊕n .

So lengthA(M) ≡ 0 (mod n).

5



(3.2) Definition Let K be a field, B be a K-algebra, and let A be a finite dimensional
simple K-subalgebra of B. Then B is a free left A-module by Lemma 3.1. We define the
rank of B over A, denoted [B : A], to be the rank of B as a free left A-module. Clearly
[B : A] = dimK(B)/dimK(A) if dimK(A) <∞.

(3.3) Definition Let K be a field. Let B be a finite dimensional simple K-algebra, and let
A be a simple K-subalgebra of B. Let N be a left simple B-module, and let M be a left
simple A-module.

(i) Define i(B,A) := lengthB(B ⊗AM), called the index of A in B.

(ii) Define h(B,A) := lengthA(N), called the height of B over A.

Here [B : A] denotes the A-rank of Bs, where Bs is the free left A-module underlying B.

(3.4) Lemma Notation as in Def. 3.3.

(i) lengthB(B ⊗A U) = i(B,A) lengthA(U) for every left A-module U .

(ii) lengthA(V ) = h(B,A) · lengthB(V ) for every left B-module V .

(iii) lengthB(Bs) = i(B,A) · lengthA(As).

(iv) lengthA(B ⊗A U) = [B : A] · lengthA(U) for every left A-module U .

(v) [B : A] = h(B,A) · i(B,A)

Proof. Statements (i), (ii) follow immediately from the definition. The statement (iii) follows
from (i) and the fact that Bs ∼= B ⊗A As. The statement (iv) holds for U = As from the
definition of [B : A], hence it hold for all left A-modules U . To show (v), we apply (iv) to a
simple A-module M and get

[B : A] = lengthA(B ⊗AM) = h(B,A) lengthB(B ⊗AM) = h(B,A) i(B,A) .

Another proof of (iv) is to use the A-module As instead of a simple A-module M :

[B : A] lengthA(As) = lengthA(Bs) = lengthB(Bs)h(B,A) = h(B,A) i(B,A) lengthA(As) .

The last equality follows from (iii).

(3.5) Lemma Let A ⊂ B ⊂ C be inclusion of simple algebras over a field K. Then i(C,A) =
i(C,B) · i(B,A), h(C,A) = h(C,B) · h(B,A), and [C : A] = [C : B] · [B : A].

(3.6) Lemma Let K be an algebraically closed field. Let B be a finite dimensional simple
K-algebra, and let A be a semisimple K-subalgebra of B. Let M be a simple A-module, and
let N be a simple B-module.

(i) N contains M as a left A-module.

(ii) The following equalities hold.

dimK(HomB(B ⊗AM,N)) = dimK(HomA(M,N)) = dimK(HomA(N,M))

= dimK(HomB(N,HomA(B,M)))
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(iii) Assume in addition that A is simple. Then i(B,A) = h(B,A).

Proof. Statements (i), (ii) are easy and left as exercises. The statement (iii) follows from
the first equality in (ii).

(3.7) Lemma Let A be a simple algebra over a field K. Let M be a non-trivial finitely
generated left A-module, and let A′ := EndA(M). Then lengthA(M) = lengthA′(A′s), where
A′s is the left A′s-module underlying A′.

Proof. Write M ∼= Un, where U is a simple A-module. Then A′ ∼= Mn(D), where D :=
EndA(U) is a division algebra. So lengthA′(A′s) = n = lengthA(M).

(3.8) Proposition Let K be a field, B be a finite dimensional simple K-algebra, and let A
be a simple K-subalgebra of B. Let N be a non-trivial B-module. Then

(i) A′ := EndA(N) is a simple K-algebra, and B′ := EndB(N) is a simple K-subalgebra of
A′.

(ii) i(A′, B′) = h(B,A), and h(A′, B′) = i(B,A).

Proof. The statement (i) is easy and omitted. To prove (ii), we have

lengthA(N) = lengthA′(A′s) = i(A′, B′) lengthB′(B′s) ,

where the first equality follows from Lemma 3.7 and the second equality follows from Lemma
3.4 (iii). We also have

lengthA(N) = h(B,A) lengthB(N) = h(B,A) lengthB′(B′s)

where the last equality follows from Lemma 3.7. So we get i(A′, B′) = h(B,A). Replacing
(B,A) by (A′, B′), we get i(B,A) = h(A′, B′).

(3.9) Extending the method in , we can express the invariants i(B,A) and h(B,A) somewhat
more explicitly in terms of the basic invariants of B and A. Write

A ∼= Mm(D), B ∼= Mn(E)

where E is a central division algebra over K, and E is a central division algebra over a finite
extension field L/K. Let d2 = dimL(D), e2 = dimK(E). Let M ∼= D⊕m, N ∼= E⊕n, with their
natural module structure over Mm(D) and Mn(E) respectively. The canonical isomorphism

HomB(B ⊗AM,N) ∼= HomA(M,N)

gives us the equality
i(B,A) · e2 = h(B,A) · d2 · [L : K] .

Together with i(B,A) · h(B,A) = [B : A] = n2 e2

m2 d2 [L:K]
, we get

i(B,A) =
n

m
, h(B,A) =

[B : A]

(n/m)
.

In particular, m | n, and (n/m) | [B : A].
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§4. Centralizers

(4.1) Theorem Let K be a field. Let B be a finite dimensional central simple algebra over
K. Let A be a simple K-subalgebra of B, and let A′ := ZB(A). Let L := A∩A′ = Z(A). Then
the following holds.

(i) A′ is a simple K-algebra.

(ii) A := ZB(ZB(A)).

(iii) [B : A′] = [A : K], [B : A] = [A′ : K], [B : K] = [A : K] · [A′ : K].

(iv) L = Z(A) = Z(A′); A and A′ are linearly disjoint over L.

(v) If A is a central simple algebras over K, then A⊗K A′
∼−→ B.

(vi) For any non-trivial B-module N we have natural isomorphisms

EndB(N)⊗K A
∼−→ EndZB(A)(N), EndB(N)⊗K ZB(A)

∼−→ EndA(N) .

Remark (1) Statements (i) and (ii) of Thm. 4.1 is the content of double centralizer theorem
2.10. The proof in 2.10 uses Noether-Skolem and the fact that the double centralizer of any
K-algebra A in EndK(A) is equal to itself. The proof in 4.1 relies on Prop. 3.8.

(2) Statement (v) of Thm. 4.1 is a special case of Thm. 2.9.

Proof. Let N be a non-trivial left B-module. Let D := EndB(N). We have D ⊆ EndK(N) ⊇
B, and Z(D) = Z(B) = K. So D ⊗K A is a simple K-algebra, and we have

D ⊗K A
∼−→ D ·A ⊆ EndK(N) =: C

where D · A is the subalgebra of EndK(N) generated by D and A. We have B ∼= Mn(R) for
some central division K-algebra R. Under this identification we can take N to be Mn×1(R).
Then D = Ropp, operating naturally on Mn×1(R), and ZC(D) = B. So we know one instance
of the double centralizer theorem; ZC(ZC(B)) = B. We will leverage this one instance to
prove the general double centralizer theorem. We have

ZC(D ·A) = ZC(D) ∩ ZC(A) = B ∩ ZC(A) = A′ .

Hence A′ = EndD·A(N) is simple, because D ·A is simple. We have proved (i).

Apply Prop. 3.8 (ii) to the pair (D ·A,D) and the D ·A-module N . We get

[A : K] = [D ·A : D] = [B : A′]

since ZC(D) = B. On the other hand, we have

[B : A] · [A : K] = [B : K] = [B : A′] · [A′ : K] = [A : K] · [A′ : K]

so [B : A] = [A′ : K]. We have proved (iii).

Apply (i) and (iii) to the simple K-subalgebra A′ ⊆ B, we see that [A : K] = [ZB(A′) : K],
so A = ZB(ZB(A)) because A ⊂ ZB(A′). We have proved (ii).

Let L := A ∩ A′ = Z(A) ⊆ Z(A′) = Z(A). The last equality follows from (ii). The tensor
product A⊗L A′ is a central simple algebra over L since A and A′ are central simple over L.
So the canonical homomorphism A⊗LA′ → B is an injection. We have prove (iv). The above
inclusion is an equality if and only if L = K, because dimL(B) = [L : K] · [A : L] · [A′ : L].

8



We have seen in the proof of (i) that the centralizer of the image C of EndB(N)⊗K A in
EndK(N) is ZB(A). So C is equal to EndZB(A)(N). We have proved the first equality in (vi).
The second equality in (vi) follows.

Remark (a) Theorem 4.1 (iii) is crucial in 4.3–4.6 below.
(b) One can also finish the proof of (vi) by dimension count, after having shown a natural
injection EndB(N)⊗K A′ ↪→ EndA(N). Let r = dimK(N). Then

• dimK(EndA(N)) = r2/dimK(A),

• dimK(EndB(N)) = r2/dimK(B),

• dimK(A′) = dimK(B)/dimK(A),

all by 4.1 (iii). So dimK(EndB(N)⊗K A′) = dimK(EndA(N)).

(4.2) Corollary Notation as in 4.1. Let L := Z(A) = Z(ZB(A)). Then [A ⊗L ZB(A)] and
[B ⊗K L] are equal as elements of Br(L).

Proof. Take N = B, the left regular representation of B, in Thm. 4.1. The second equality
in 4.1 (vi) becomes

Bopp ⊗K ZB(A) ∼= EndA(Bs) ∼= M[B:A](A
opp)

because Bs is a free left A-module of rank [B : A]. Similarly the first equality in 4.1 (vi) reads

Bopp ⊗K A ∼= M[B:ZB(A)](ZB(A)opp) .

(4.3) Corollary Let A be a finite dimensional central simple algebra over a field K, and let
F be a subfield of A which contains K. Then F is a maximal subfield of A if and only if
[F : K]2 = [A : K].

Proof. Immediate from Thm. 4.1 (iii).

(4.4) Proposition Let D be a finite dimensional central division algebra over a field K.
Then D admits a maximal subfield L with [L : K]2 = dimK(D) such that L is separable over
K. In particular D has a separable splitting field.

Proof. Induction on dimK(D), use Proposition 2.7 and Theorem 4.1 (iii).

Remark It is not true that every finite dimensional central simple algebra A over K has
subfield L with [L : K]2 = dimK(A). The most obvious example is when K is algebraically
closed. Another similar example is when K ⊃ Fp is separably closed and dimK(A) is relatively
prime to p.

(4.5) Proposition Let A be a finite dimensional central simple algebra over K. Let F be an
extension field of K such that [F : K] = n := [A : K]1/2. Then there exists a K-linear ring
homomorphism F ↪→ A if and only if A⊗K F ∼= Mn(F ).
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Proof. The “only if” part is contained in Lemma 2.6. It remains to show the “if” part.
Suppse that A⊗K F ∼= Mn(F ). Choose a K-linear embedding α : F ↪→ Mn(K). The central
simple algebra B := A⊗K Mn(K) over K contains C1 := A⊗K α(F ) as a subalgebra, whose
centralizer in B is K ⊗K α(F ). Since C1

∼= Mn(F ) by assumption, C1 contains a subalgebra
C2 which is isomorphic to Mn(K). By Noether-Skolem, ZB(C2) is isomorphic to A over K.
So we get F ∼= ZB(C1) ⊂ ZB(C2) ∼= A.

(4.6) Corollary Let ∆ be a central division algebra over K, and let F be a finite extension
field of K. Let n = dimK(∆)1/2. The field F is a splitting field of ∆ if and only if n | [F : K]
and F is a maximal subfield of Mr(∆), where r = [F : K]/n.

Proof. By 4.5, it suffices to show that if F is a splitting field of ∆, then n | [F : K]. But
then we have an action of ∆ on F⊕n, and n2 = dimK(D) | dimK(F⊕) = n[F : K]. Therefore
n | [F : K].

Remark Here is an equivalent form of 4.6, and a direct proof.

Let A be a central simple algebra over a field K, and let L be a splitting field of A.
Then there exists a central simple algebra A1 in the same Brauer class of A which
has a maximal subfield L1 isomorphic to L over K.

Proof. Let dimK(A) = n2, d = [L : K]. By assumption we have

Aopp ⊗K L ∼
α // Mn(L) �

� j // Mnd(K) =: B .

According to 4.1 (iv), A1 := ZC((j ◦ α)(Aopp ⊗ 1)) is a central simple algebra over K, in the
same Brauer class as A. Theorem 4.1 (iii) tells us that dimK(A1) = d2 = [L : K]2. Clearly
L1 := (j ◦ α)(1⊗ L) ⊂ A1, so L1 is a maxmial subfield of A1.
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