1. Consider the finite Hisenberg group H_{p} defined in assignment 8:

$$
H_{p}:=\left\{\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{F}_{p}\right\}
$$

where p is a prime number. Let U be the subgroup of H_{p} consisting of all element $x \in H_{p}$ whose $(2,3)$-entry "c" vanishes. This subgroup U is commutative, which has p^{2} one-dimensional characters. For each one-dimensional character χ of U, we have an induced character $\rho_{\chi}:=$ $\operatorname{Ind}_{U}^{H_{p}}(U, \chi)$.
(a) Determine explicitly the set of all one-dimensional characters χ of U such that ρ_{χ} is irreducible.
(b) For each χ such that ρ_{χ} is irreducible, determine all characters χ^{\prime} of U such that $\rho_{\chi^{\prime}}=\rho_{\chi}$.
(c) For each χ such that ρ_{χ} is reducible, find the decomposition of ρ_{χ} as a sum of irreducible characters of H_{p}.
2. The symmetric group S_{4} contains a normal subgroup K isomorphic to $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$, and a subgroup S_{3} consisting of all permutations of $\{1,2,3,4\}$ fixing the letter $4 ; S_{4}$ is a semi-direct product of K and S_{3}. In particular the quotient group S_{4} / K is isomorphic to S_{3}.
(a) Compute the character table of S_{4}. Note S_{4} has 5 conjugacy classes; $24=1^{2}+1^{2}+2^{2}+$ $3^{2}+3^{2}$, and S_{4} has two 3-dimensional irreducible characters.
(b) Determine whether either of the two 3-dimensional irreducible characters χ_{4} and χ_{5} is induced from a one-dimensional character of a Sylow 2-subgroup P of S_{4}.
3. Let $D_{n}=(\mathbb{Z} / n \mathbb{Z}) \rtimes(\mathbb{Z} / 2 \mathbb{Z})$ be the dihedral group with $2 n$ element, $n \geq 3$. Denote by N the normal subgroup $\mathbb{Z} / n \mathbb{Z}$. For each one-dimensional character χ of N, we have an induced character $\operatorname{Ind}_{N}^{D_{n}}(\chi)$ of degree 2.
(a) Determine explicitly which ones of the induced characters $\operatorname{Ind}_{N}^{D_{n}}(\chi)$ are irreducible.
(b) Determine when two induced characters $\operatorname{Ind}_{N}^{D_{n}}(\chi)$ and $\operatorname{Ind}_{N}^{D_{n}}\left(\chi^{\prime}\right)$ are equal.
(c) Compute the character table of D_{n}. (The shape of your answer will depend on the parity of n.)
4. Let H be a subgroup of a finite group G. The left action of G on G / H gives rize to a linear representation of G on $\mathbb{C}[G / H]$, often called the "permutation representation on G / H ". Denote by $\tau_{G / H}$ the character of this representation.
(a) Show that $\sum_{x \in G} \tau_{G / H}(x)=\operatorname{card}(G)$.
(b) Show that $\sum_{x \in G} \tau_{G / H}(x)^{2}=\operatorname{card}(H \backslash G / H) \cdot \operatorname{card}(G)$.
5. Recall that for a finite cyclic group $A \cong \mathbb{Z} / n \mathbb{Z}$, we defined \mathbb{Z}-valued functions θ_{A} and λ_{A} on A by

$$
\theta_{A}(x)=\left\{\begin{array}{ll}
n & \text { if } x \text { generates } A \\
0 & \text { otherwise }
\end{array} \quad \lambda_{A}:=\phi(n) \mathrm{r}_{A}-\theta_{A}\right.
$$

where ϕ denotes Euler's ϕ-function, so $\phi(n)=\operatorname{card}\left(A^{\times}\right)$, and r_{A} is the character of the regular representation of A. We showed by direct computation that there exist positive integers $c_{\psi} \in \mathbb{N}_{>0}$ indexed by non-trivial one-dimensional characters ϕ of A such that

$$
\lambda_{A}=\sum_{\psi} c_{\psi} \psi
$$

where ψ runs through all non-trivial one-dimensional characters A.
Prove the following explicit expression of the coefficients c_{ψ} :

$$
c_{\psi}=\phi(n)-\frac{\phi(n) \mu(b)}{\phi(b)},
$$

where $b=\operatorname{card}\left(\psi^{\mathbb{Z}}\right)$ is the order of the character ψ, and μ is the Möbius function. Notice that $\phi(b) \mid \phi(n)$, and $\phi(b)=1$ only when $b=2$, in which case $c_{\psi}=2 \phi(n)$.

Recall that the Möbius function $\mu: \mathbb{Z}_{>0} \rightarrow \mathbb{N}$ is defined by specifying its generating function

$$
\sum_{n \in \mathbb{N}>0} \mu(n) n^{-s}=\prod_{p}\left(1-p^{-s}\right),
$$

where p runs through all prime numbers in the infinite product $\prod_{p}\left(1-p^{-s}\right)$. (Hint: $\theta_{A}=\sum_{\psi}\left(\theta_{A}, \psi\right) \psi$, and the coefficient

$$
\left(\theta_{A}, \psi\right)=\sum_{x \in A, x} \psi(x)
$$

is an exponential sum. So this question asks for an explicit evaluation of this exponential sum.)
6. Let Q be the quaternion group. For each cyclic subgroup A of Q, we have a homomorphism

$$
\operatorname{Ind}_{A}^{G}: R(A) \longrightarrow R(Q)
$$

from the Grothendieck group $R(A)$ of virtual characters of A to the group $R(Q)$ of virtual characters of Q. Let \mathcal{J} be the sum

$$
\sum_{A \leq Q, A \text { cyclic }} \operatorname{Ind}_{A}^{Q}(R(A))
$$

We showed in class that $[R(Q): \mathcal{J}]<\infty$. Determine whether \mathcal{J} is equal to $R(Q)$.

