Math 602 Assignment 8, 2020-21

1. Compute the character table of the following finite groups:
(a) The quaternion group Q, the finite subgroup of the unit group $\mathbb{H}_{\mathbb{R}}^{\times}$of the ring $\mathbb{H}_{\mathbb{R}}$ of all Hamilton's quaternions, defined by

$$
Q:=\{ \pm 1, \pm i, \pm j, \pm k\} \subseteq \mathbb{H}_{\mathbb{R}}^{\times} .
$$

(b) The dihedral group D_{8} with 8 elements. Compare the character tables of D_{8} and Q.
(c) The finite Heisenberg group $H_{p} \subseteq \mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)$, defined by

$$
H_{p}:=\left\{\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{F}_{p}\right\}
$$

where p is a prime number
2. Let n be a positive integer with $n \geq 3$. Define the generalize quaternion group $Q_{2^{n}}$ with 2^{n} elements by

$$
Q_{2^{n}}:=\left(\left(\mathbb{Z} / 2^{n-1} \mathbb{Z}\right) \ltimes_{\rho_{n}}(\mathbb{Z} / 4 \mathbb{Z})\right) /\left\langle\left(2^{n-2} \bmod 2^{n-1}, 2 \bmod 2\right)\right\rangle,
$$

where $\rho_{n}: \mathbb{Z} / 4 \mathbb{Z} \longrightarrow\left(\mathbb{Z} / 2^{n-1} \mathbb{Z}\right)^{\times}$is the group homomorphism such that

$$
\rho_{n}(b \bmod 4)\left(c \bmod 2^{n-1}\right)=(-1)^{b} \cdot c \bmod 2^{n-1} \quad \forall b, c \in \mathbb{Z}
$$

and $\left\langle\left(2^{n-2} \bmod 2^{n-1}, 2 \bmod 2\right)\right\rangle$ is the subgroup of the semi-direct product

$$
\left(\mathbb{Z} / 2^{n-1} \mathbb{Z}\right) \ltimes_{\rho_{n}}(\mathbb{Z} / 4 \mathbb{Z})
$$

generated by the element $\left(2^{n-2} \bmod 2^{n-1}, 2 \bmod 2\right)$ of order 2 . Note that $\operatorname{card}\left(Q_{2^{n}}=2^{n}\right.$, and Q_{8} is isomorphic to the quaternion group Q.
(a) Determine the character table of Q_{16}.
(b) (extra credit) Determine the character table of $Q_{2^{n}}$ for $n \geq 5$.
3. Let p be a prime number and let $B\left(\mathbb{F}_{p}\right)$ be the subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, consisting of all upper-triangular matrices in $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. In particular $B\left(\mathbb{F}_{p}\right)$ has $p(p-1)^{2}$ elements.
(a) Show that $B\left(\mathbb{F}_{p}\right)$ has $p^{2}-p$ conjugacy classes. Among them are p elements in the center, p conjugacy classes each with $p-1$ elements, and $(p-1)(p-2)$ conjugacy classes each with p elements.
(b) Show that $B\left(\mathbb{F}_{p}\right)$ has $(p-1)^{2}$ one-dimensional characters. So $B\left(\mathbb{F}_{p}\right)$ has $p-1$ non-abelian irreducible characters.
(c) Compute the character table of $B\left(\mathbb{F}_{p}\right)$ for $p=3$.
(d) Compute the character table $B\left(\mathbb{F}_{p}\right)$ for general p 's.
[Hint: If you want to "guess" the character table, there are many constraints which help. The orthogonality relations imply that every non-abelian irreducible character vanishes on those conjugacy classes with p-elements. Note also that the product of any irreducible character with a one-dimensional character is an irreducible character. So once you gave one irreducible non-abelian character, multiplication by one-dimensional characters give you $p-1$ characters, and you have gotten them all. You can also try to begin by constructing some non-trivial action of $B\left(\mathbb{F}_{p}\right)$ on some finite set. Alternatively try to construct an induced representation from a subgroup with relatively small index.]
4. (a) Compute the character table of $\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$. Note that $\operatorname{card}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)\right)=p(p-1)(p+1)$.
(b) (extra credit) Compute the character table of $\mathrm{SL}_{2}\left(\mathbb{F}_{5}\right)$.
5. (extra credit) Compute the character table of the symmetric group S_{5} and the alternating group A_{5}.
(Hint: The symmetric group S_{4} is solvable and it is not difficult to compute the characters table of S_{4}. The group S_{5} operate on the set $\{1,2,3,4,5\}$, giving rise to a 4 -dimensional irreducible representation U of S_{4}; denote its character by χ_{3}. The product of the sign character $\chi_{\text {sgn }}$ with χ_{3} is another irreducible character; call it χ_{4}. The second exterior product $\bigwedge^{2} U$ is a 6 -dimensional representation. Show that it is irreducible; call its character χ_{7}. Decompose the 10 -dimensional second symmetric product $S^{2}(U)$ of U to get a 5 -dimensional irreducible character χ_{5}. Multiply χ_{5} with the sign character χ_{sgn} to get another 5 -dimensional character χ_{7}. This gives the 7 irreducible characters of S_{5}. Decompose the restrictions to A_{5} of irreducible representations of S_{5} to get all irreducible characters of A_{5}.)

