Math 602 Assignment 4, Fall 2020

Part A. From Gallier-Shatz:

- problem 37
- problem 39
- problem 42
- problem 48

Part B.

1. Let k be a field, and let K be an algebraic extension field of k. Let $\alpha, \beta, \gamma \in K$ such that $[k(\alpha): k]=2[k(\beta): k]=3$ and $[k(\gamma): k]=7$.
(a) Find all possible values of $[k(\alpha+\beta): k]$. (You need to produce examples for each asserted value, and prove that no other values are possible.)
(b) Find all possible values of $[k(\beta+\gamma): k]$.
(Recall that $k(\alpha+\beta)$ denotes the smallest subfield of K which contains k and the element $\alpha+\beta$.)
2. Let $\mathbb{Z}[\sqrt{-5}]$ be the subring of \mathbb{C} generated by \mathbb{Z} and a square root of -5 .
(a) Show that $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain.
(b) Give an example of a projective $\mathbb{Z}[\sqrt{-5}]$-module which is not free.
(c) Determine the projective dimension of $\mathbb{Z}[\sqrt{-5}]$, i.e. suppr. $\operatorname{dim}_{\mathbb{Z}[\sqrt{-5}]} M$, where M runs through all $\mathbb{Z}[\sqrt{-5}]$-modules.
3. Let k be a field, let K be a finitely generated extension field of k, and let F be a subfield of K. Is F necessarily finitely generated extension field of k ? Either give a proof, or give a counter-example.
4. Let R be a commutative ring. Define the formal power series ring $R[[x]]$ in one variable x to be the set of all formal infinite series

$$
\sum_{n \in \mathbb{N}} a_{n} x^{n}, \quad a_{n} \in R \forall n \in \mathbb{N} .
$$

The binary operations "sum" and "product" in $R[[x]]$ are defined by the usual formulas. For instance

$$
\left(\sum_{n \in \mathbb{N}} a_{n} x^{n}\right) \cdot\left(\sum_{m \in \mathbb{N}} b_{m} x^{m}\right)=\sum_{l \in \mathbb{N}}\left(\sum_{0 \leq i \leq l} a_{i} b_{l-i}\right) x^{l}
$$

Assume that R is Noetherian. The Hilbert basis theorem asserts that the polynomial ring $R[x]$ is Noetherian; see Shatz-Gallier Theorem 2.11. Is it true that $R[[x]]$ is also Noetherian? Proof or counter-example.

