Part A. From Gallier–Shatz:

- problem 37
- problem 39
- problem 42
- problem 48

Part B.

1. Let k be a field, and let K be an algebraic extension field of k. Let $\alpha, \beta, \gamma \in K$ such that $[k(\alpha):k] = 2 [k(\beta):k] = 3$ and $[k(\gamma):k] = 7$.

- (a) Find all possible values of $[k(\alpha + \beta) : k]$. (You need to produce examples for each asserted value, and prove that no other values are possible.)
- (b) Find all possible values of $[k(\beta + \gamma) : k]$.

(Recall that $k(\alpha + \beta)$ denotes the smallest subfield of K which contains k and the element $\alpha + \beta$.)

- 2. Let $\mathbb{Z}[\sqrt{-5}]$ be the subring of \mathbb{C} generated by \mathbb{Z} and a square root of -5.
 - (a) Show that $\mathbb{Z}[\sqrt{-5}]$ is *not* a principal ideal domain.
 - (b) Give an example of a projective $\mathbb{Z}[\sqrt{-5}]$ -module which is *not* free.
 - (c) Determine the projective dimension of $\mathbb{Z}[\sqrt{-5}]$, i.e. suppr. $\dim_{\mathbb{Z}[\sqrt{-5}]} M$, where M runs through all $\mathbb{Z}[\sqrt{-5}]$ -modules.

3. Let k be a field, let K be a finitely generated extension field of k, and let F be a subfield of K. Is F necessarily finitely generated extension field of k? Either give a proof, or give a counter-example.

4. Let R be a commutative ring. Define the formal power series ring R[[x]] in one variable x to be the set of all formal infinite series

$$\sum_{n \in \mathbb{N}} a_n x^n, \quad a_n \in R \ \forall n \in \mathbb{N}.$$

The binary operations "sum" and "product" in R[[x]] are defined by the usual formulas. For instance

$$\left(\sum_{n\in\mathbb{N}}a_n\,x^n\right)\cdot\left(\sum_{m\in\mathbb{N}}b_m\,x^m\right)=\sum_{l\in\mathbb{N}}\left(\sum_{0\leq i\leq l}a_i\,b_{l-i}\right)x^l.$$

Assume that R is Noetherian. The Hilbert basis theorem asserts that the polynomial ring R[x] is Noetherian; see Shatz–Gallier Theorem 2.11. Is it true that R[[x]] is also Noetherian? Proof or counter-example.