MATH 602 ASSIGNMENT 2, FALL 2020

Part A. From Gallier–Shatz: Problems 15, 18, 20, 21, 23, 25, 27.

Typo in problem 25: the symbol \wr (for wreath products) in both parts of problem 25 should be replaced by \rtimes (for semi-direct products).

Part B.

1. Let A be an abelian group, not necessarily finite. Let $\mathbb{Z}[A]$ be the integer group ring attached to A. Recall that $\mathbb{Z}[A]$ is a free \mathbb{Z} -module with basis $\{[a] : a \in A\}$, and the product in $\mathbb{Z}[A]$ is determined by $[a] \cdot [b] = [a+b]$ for all $a, b \in A$.

- (a) Show that if A has a non-zero torsion element, then $\mathbb{Z}[A]$ is not an integral domain.
- (b) Show that if A is finitely generated, then $\mathbb{Z}[A]$ is an integral domain if and only if A is torsion-free.
- (c) Does the statement (b) hold without the assumption that A is finitely generated? Either give a proof, or provide a counter-example.

2. Let R be a commutative ring, and let $A = \sum_{i \in \mathbb{N}} A_i$ be a graded commutative R-algebra. (Our standing convention is that all rings have a unity element 1.)

- (a) Suppose that $R = \mathbb{Z}$, A_i is a finitely generated \mathbb{Z} -module for every $i \in \mathbb{N}$. Suppose moreover that the graded \mathbb{F}_p -algebra $A \otimes_{\mathbb{Z}} \mathbb{F}_p$ is isomorphic to a polynomial algebra $\mathbb{F}_p[x_a]_{a \in \mathbb{N}_{\geq 1}}$ in variables x_a , where a ranges through all positive integers, and each x_a is homogeneous of degree a. Prove that the graded algebra A A is isomorphic to the polynomial algebra $\mathbb{Z}[X_a]_{a \in \mathbb{N}_{\geq 1}}$ in variables X_a homogeneous of degree $a, a \in \mathbb{N}_{\geq 1}$.
- (b) Does the statement (a) hold without the assumption that each A_i is a finitely generated \mathbb{Z} -module?
- (c) Formulate and prove a statement for more general commutative base rings R and and more general conditions than in (a).