Part I. From Gallier-Shatz:

- problem 127 (This problem is related to the two problems in part III.)
- problem 126
- problem 129
- problem 131, part 4
- (extra credit) problem 132

Part II. The questions in this part belong to the old "theory of equations" for cubic and quartic polynomials. The groups involved are subgroups of S_{3} and S_{4}, hence solvable.

1. Let k be a field such that $2 \in k^{\times}$. Let

$$
f(T)=T^{3}+a_{1} T^{2}+a_{2} T+a_{3}
$$

be a cubic polynomial in $k[T]$. Fix an algebraic closure k^{a} of k. Let

$$
f(T)=\left(T-\alpha_{1}\right)\left(T-\alpha_{2}\right)\left(T-\alpha_{3}\right), \quad \alpha_{1}, \alpha_{2}, \alpha_{3} \in k^{\mathrm{a}},
$$

and let $E_{f(T)}:=k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ be the splitting field of $f(T)$ in $k^{\text {a }}$. Let

$$
D_{f(T)}=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}
$$

be the discriminant of $f(T)$. Similarly, for a quartic polynomial

$$
g(T)=T^{4}+b_{1} T^{3}+b_{2} T^{2}+b_{3} T+b_{4} \in k[T],
$$

factor $g(T)$ as

$$
g(T)=\prod_{i=1}^{4}\left(T-\beta_{i}\right), \quad \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4} \in k^{\mathrm{a}},
$$

and let

$$
D_{g(T)}:=\prod_{1 \leq i<j \leq 4}\left(\beta_{i}-\beta_{j}\right)^{2} \in k^{\times} .
$$

Note that the Galois group of the splitting field of $f(T)$ is contained in the alternation group $A_{3} \subseteq S_{3}$ if and only $D_{f(T)} \in\left(k^{\times}\right)^{2}$; and the Galois group of the splitting field of $g(T)$ is contained in the alternation group $A_{4} \subseteq S_{4}$ if and only $D_{f(T)} \in\left(k^{\times}\right)^{2}$. The assumption that the characteristic of the field k is different from 2 is used in this statement.
(a) Find an explicit expression of $D_{f(T)}$ in terms of the coefficients a_{1}, \ldots, a_{3} of $f(T)$, and an explicit expression of $D_{g(T)}$ in terms of the coefficients b_{1}, \ldots, b_{4} of $g(T)$.

Note: The computations are a bit tedious. The formulas are classical, which you can easily find, at least when $a_{1}=0$ and $b_{1}=0$. The polynomial $D_{f(T)}$ in the a_{j} 's is homogeneous of degree 6 , while $D_{g(T)}$ is homogeneous of degree 12, if a_{j} and b_{j} are given weight j for each j.
(b) Suppose that $f(T)$ is separable and irreducible in $k[T]$. Let $E_{f(T)}:=k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ be the splitting field of $f(T)$.
(b1) Let $\delta_{f(T)}:=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{1}-\alpha_{3}\right)$. Show that $f(T)$ is irreducible in $k(\delta)[T]$ and $\left[E_{f(T)}: k(\delta)\right]=3$.
(b2) Show that $\operatorname{Gal}\left(E_{f(T)}\right) / k$ is isomorphic to S_{3} if $D_{f(T)} \notin\left(k^{\times}\right)^{2}$.
(b3) Show that $\operatorname{Gal}\left(E_{f(T)}\right) / k$ is isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$ if $D_{f(T)} \in\left(k^{\times}\right)^{2}$.
2. We recall the discussion on Friday March 5th about the Galois group of the splitting field E / k of a separable irreducible quartic polynomial

$$
g(T)=T^{4}+b_{1} T^{3}+b_{2} T^{2}+b_{3} T+b_{4} \in k[T] .
$$

- Write $g(T)=\prod_{i=1}^{4}\left(T-\beta_{i}\right)$, where $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ are four distinct elements of an algebraic closure k^{a} of k.
- Let $E=k\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ be the splitting field of $g(T)$, and let $G=\operatorname{Gal}(E / k)$.
- The solvable group $S_{4}=\operatorname{Perm}\left(\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}\right)$ has a composition series

$$
S_{4} \triangleright A_{4} \triangleright V_{4} \triangleright C \triangleright\{1\},
$$

where $V_{4}=\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$ is the normal subgroup of S_{4} isomorphic to $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$, and C is one of the three cyclic subgroups of V_{4} of order 2 . This gives rize to a composition series

$$
G \triangleright\left(G \cap A_{4}\right) \triangleright\left(G \cap V_{4}\right) \triangleright(G \cap C) \triangleright\{1\}
$$

of G.

- Let $\delta:=\prod_{1 \leq i<j \leq 4}\left(\beta_{i}-\beta_{j}\right)$, and let $D=D_{g(T)}:=\delta^{2} \in k$ be the discriminant of $g(T)$. We explained that the subfield $E^{\left(G \cap A_{4}\right)}$ corresponding to $G \cap A_{4}$ is equal to $k(D)$. In particular $G \subseteq A_{4}$ if and only if $D \in\left(k^{\times}\right)^{2}$.
- Let $\gamma_{1}:=\beta_{1} \beta_{2}+\beta_{3} \beta_{4}, \gamma_{2}:=\beta_{1} \beta_{3}+\beta_{2} \beta_{4}, \gamma_{3}:=\beta_{1} \beta_{4}+\beta_{2} \beta_{3}$. Let $\theta_{1}:=\left(\beta_{1}+\beta_{2}\right)\left(\beta_{3}+\beta_{4}\right)$, $\theta_{2}:=\left(\beta_{1}+\beta_{3}\right)\left(\beta_{2}+\beta_{4}\right), \theta_{3}:=\left(\beta_{1}+\beta_{4}\right)\left(\beta_{2}+\beta_{3}\right)$.
(a) Show that the subfield $E^{\left(G \cap V_{4}\right)}=: L$ of E corresponding to $G \cap V_{4}$ is equal to $k\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$. (It may help to verify first that $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are mutually distinct.)
(b) Show that $k\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)=k\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$.
(c) Show that the subfield $E^{(G \cap\{i d,(12)(34)\})}$ of E corresponding to the subgroup $G \cap\{i d,(12)(34)\}$ of G is equal to $L\left(\beta_{1}+\beta_{2}, \beta_{1} \beta_{2}\right)$.
(d) We did in class a complete classification of subgroups of S_{4} acting transitively on $\{1,2,3,4\}$; such a subgroup is one of: S_{4}, A_{4}, V_{4}, a Sylow 2-subgroup, or a cyclic group of order 4 generated by a 4 -cycle. Prove the following.
- If $[L: k]=6$, then $G=S_{4}$.
- If $[L: k]=3$, then $G=A_{4}$.
- If $[L: k]=1$, then $G=V_{4}$.
- If $[L: k]=2$, then G is either a Sylow 2-subgroup of S_{4} or cyclic of order 4 .
(This is an easy consequence of the classification of transitive subgroups $H \subseteq S_{4}$, by examining the image of H in S_{4} / V_{4}, as explained in class. The next question looks at $H \cap V_{4}$.)
(e) Suppose that $[L: k]=2$. Show that G is a Sylow 2-subgroup of S_{4} if and only if $g(T)$ is irreducible in $L[T]$.

3. We further explore the question of "solving a irreducible quartic polynomial equation by radicals", in the setting of problem 2.
(a) Show that $\left(T-\left(\beta_{1}+\beta_{2}\right)\right) \cdot\left(T-\left(\beta_{3}+\beta_{4}\right)\right) \in k\left(\theta_{1}\right)[T]$ and find this quadratic polynomial explicitly. (Your answer will involve some coefficients of $g(T)$.)
(b) Show that both cubic polynomials $R_{1}(T):=\prod_{j=1}^{3}\left(T-\gamma_{j}\right)$ and $R_{2}(T):=\prod_{j=1}^{3}\left(T-\theta_{j}\right)$ are elements of $k[T]$. Compute them explicitly in terms of the coefficients of $g(T)$.
(Often one assumes that the characteristic of the field k is not 2, therefor after changing T to $T-\frac{1}{4} b_{1}$ one may assume that $b_{1}=0$. Both $R_{1}(T)$ and $R_{2}(T)$ are called cubic resolvent polynomials of $g(T)$; their coefficients are given by homogeneous polynomials in $b_{1}, b_{2}, b_{3}, b_{4}$ if b_{j} is given weight j for $j=1, \ldots, 4$.)
(c) The composition series for G gives rise to three towers of sub-extension fields

$$
k=E^{G} \subseteq E^{G \cap A_{4}} \subseteq L=E^{G \cap V_{4}} \subseteq E^{G \cap C} \subseteq E,
$$

one for each of the three nontrivial subgroup C of V_{4}. In each tower, every immediate field extension is Galois with Galois group a subgroup of $\mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 3 \mathbb{Z}$.

Assume that $6 \in k^{\times}$and $T^{3}-1$ splits in $k[T]$. Explain how the above considerations produce "explicit formulas" for the roots of a quartic polynomial,.
(Hint: The assumption that $6 \in k^{\times}$and $T^{3}-1$ splits in $k[T]$ implies that every such immediate field extension can be obtained by adjoining either a square root or a cubit root. The resulting formulas are quite clean if $b_{1}=0$; old books on the "theory of equations" devote a whole chapter with such forumlas. Note that this assumption is not "absolutely necessary": you just say "adjoin a root of this quadratic/cubic polynomial" instead of "adjoin a square/cubic root of this element".)
4. Let K be a field of characteristic 2 , and let $h(T)=x^{3}+a x+b \in K[T]$ be an irreducible element of $K[T]$. Prove that the Galois group of the splitting field of $h(T)$ is A_{3} or S_{3} according to whether the quadratic polynomial $Y^{2}+b Y+a^{3}+b^{2} \in K[T]$ has a root in K or not. (Hint: The two roots η_{1}, η_{2} of $Y^{2}+b Y+a^{3}+b^{2}$ are polynomials in the three roots of $h(T)$ which are fixed by every element of A_{3} but not by S_{3}.)

