Part I. From Gallier-Shatz:

- problem 122
- problem 123
- problem 125
- problem 128
- problem 131, subproblems 1 and 2.

Part II.

1. (a) Let k be a field of characteristic $p>1$ and let α be an element of an extension field of k such that $[k(\alpha): k]=p^{3}$. Consider the family \mathfrak{F} of all fields between k and $k(\alpha)$. Is \mathfrak{F} finite? Either prove that \mathfrak{F} is finite, or prove that \mathfrak{F} is infinite.
(b) Give an example of a field extension E / k such that $[E: k]<\infty$ and there are infinitely many fields between E and k.
2. We say that a field extension E / k is strongly normal if for every element $y \in E \backslash k$ (i.e. $y \in E$ and $y \notin k)$, there exists a k-linear ring automorphism $\sigma \in \operatorname{Aut}(E / k)$ such that $\sigma(y) \neq y$. Show that if k is an infinite field, then the rational function field $k(x)$ is strongly normal over k. (Hint: For every element $a \in k$, there exists an automorphism $\sigma_{a} \in \operatorname{Aut}(k(x) / k)$ such that $\sigma_{a}(x)=x+a$.)

Part III.
Let k be a field and let E be an extension field of k. Let

$$
R_{k}=\operatorname{End}_{k}(E,+)
$$

be the ring of all endomorphisms of the k-vector space underlying E. We describe a bijection between

- the family $\mathfrak{F}(E / k)$ consisting of all subextension fields F / k of E / k with $[E: F]<\infty$, and
- the family $\mathfrak{A}(E / k)$ consisting subrings of R_{k} satisfying the conditions in (B) below.

In the notation below, the bijection is

$$
F \longmapsto R_{F}, \quad R \longmapsto\left\{y \in E \mid T \circ y_{L}=y_{L} \circ T \quad \forall T \in R\right\} .
$$

So at least at a formal level this bijection is analogous to the Galois correspondence. In fact one can deduce from it the Galois correspondence. This problem has several parts, (A) and (B0)-(B5), with hints.

Notation/Definition.

i. For every element $y \in E$, denote by y_{L} the element of R_{k} which sends any $z \in E$ to $y z$.
ii. Let S be the subring of R_{k} consisting of all endomorphisms y_{L} of $(E,+)$ with $y \in E$.
iii. For every subextension field F / k of E / k, define $R_{F}:=\operatorname{End}_{F}(E,+)$ be the ring of all endomorphisms of the F-vector space underlying E. Clearly this subring R_{F} of R_{k} contains S. Left multiplication by elements of S, i.e. $y \cdot T:=y_{L} \circ T \forall y \in E, \forall T \in R_{F}$, gives R_{F} a structure as a vector space over E.
(A) Suppose that F is a subfield of E such that $[E: F]<\infty$. Show that $\operatorname{dim}_{E}\left(R_{F}\right)=[E: F]$, where the E-vector space structure of R_{F} is given above in iii.
(B) Suppose that R is a subring of R_{k} (containing 1 by our convention) such that
R is a finite dimensional E-vector subspace of R_{k}
The last condition means that $y_{L} \circ T \in R$ for all $y \in E$ and all $T \in$, and there exists elements $T_{1}, \ldots, T_{m} \in R$ such that every element of R can be written as a linear combination $\sum_{i=1}^{m} y_{i, L} \circ T_{i}$ with $y_{1}, \ldots, y_{m} \in E$. Let

$$
F:=\left\{y \in E \mid T \circ y_{L}=y_{L} \circ T \quad \forall T \in R\right\} .
$$

It is easily checked that F is a subfield of E containing k; this is part (1) below. Follow the steps below to show that there exists a subextension $[E: F]<\infty$ and $R=R_{F}$.
(B0) Show that F is a subfield of E containing k. Note that $R \subseteq R_{F}$ by definition.
(B1) Consider the k-linear map

$$
\beta: E \rightarrow \operatorname{Hom}_{E}(R, E), \quad \beta(y)(T):=T(y) \quad \forall y \in E, \forall T \in R .
$$

and the induced E-linear map

$$
\tilde{\beta}: E \otimes_{k} E \rightarrow \operatorname{Hom}_{E}(R, E), \quad \sum_{j}\left(z_{j} \otimes y_{j}\right)(T):=\sum_{j} z_{j} T\left(y_{j}\right)
$$

for all elements $\sum_{j}\left(z_{j} \otimes y_{j}\right) \in E \otimes_{k} E$. Show that the E-linear span of $\beta(E)$ is equal to $\operatorname{Hom}_{E}(R, E)$; in other words the E-linear map $\tilde{\beta}$ is a surjection, or equivalently $\beta(E)$ contains an E-basis of $\operatorname{Hom}_{E}(R, E)$. Here the E-module structure of $E \otimes_{k} E$ is through the first factor of $E \otimes_{k} E$.
(Hint: Suppose that $\tilde{\beta}(E) \subsetneq \operatorname{Hom}_{E}(R, E)$. Use basic facts about duals vector spaces to get a contradiction.)
(B2) Conclude from (1) that there exists an E-basis T_{1}, \ldots, T_{n} of the E-submodule $R \subseteq R_{k}$ and elements $y_{1}, \ldots, y_{n} \in E$ such that

$$
T_{i}\left(y_{j}\right)=\delta_{i j} \forall i, j=1, \ldots, n
$$

where $n=\operatorname{dim}_{E}(R)$.

For such elements $T_{1}, \ldots, T_{n} \in R$ and $y_{1}, \ldots, y_{n} \in E$, show that

$$
T=\sum_{i=1}^{n} T\left(y_{i}\right)_{L} \circ T_{i} \quad \forall T \in R .
$$

(B3) Use the last displayed equality in (2) to show that for any $i, j=1, \ldots, n$ and any $y \in E$, we have

$$
T_{j} \circ y_{L} \circ T_{i}=T_{j}(y)_{L} \circ T_{i} .
$$

Conclude that $T_{j}(y) \in F$ for all $y \in E$ and all $j=1, \ldots, n$.
(B4) Given any $y \in E$, consider the element

$$
y^{\prime}:=y-\sum_{j=1}^{n} T_{j}(y) \cdot y_{j} .
$$

Show that $T_{i}\left(y^{\prime}\right)=0$ for all $i=1, \ldots, n$. Conclude that $T\left(y^{\prime}\right)=0$ for all $T \in R$, and hence $y^{\prime}=0$ because R contains id_{E}.
(B5) Show that y_{1}, \ldots, y_{n} are linearly independent over F, so that $[E: F]=n$ and also that $\operatorname{dim}_{E}\left(R_{F}\right)=n$. Conclude that $R=R_{F}$.

