
Math 603 Assignment 11, 2020-21

Part I. From Gallier–Shatz:

• problem 122

• problem 123

• problem 125

• problem 128

• problem 131, subproblems 1 and 2.

Part II.

1. (a) Let k be a field of characteristic p > 1 and let α be an element of an extension field of k
such that [k(α) : k] = p3. Consider the family F of all fields between k and k(α). Is F finite?
Either prove that F is finite, or prove that F is infinite.

(b) Give an example of a field extension E/k such that [E : k] < ∞ and there are infinitely
many fields between E and k.

2. We say that a field extension E/k is strongly normal if for every element y ∈ Erk (i.e.
y ∈ E and y 6∈ k), there exists a k-linear ring automorphism σ ∈ Aut(E/k) such that σ(y) 6= y.
Show that if k is an infinite field, then the rational function field k(x) is strongly normal over
k. (Hint: For every element a ∈ k, there exists an automorphism σa ∈ Aut

(
k(x)/k

)
such

that σa(x) = x+ a.)

Part III.
Let k be a field and let E be an extension field of k. Let

Rk = Endk(E,+)

be the ring of all endomorphisms of the k-vector space underlying E. We describe a bijection
between

• the family F(E/k) consisting of all subextension fields F/k of E/k with [E : F ] < ∞,
and

• the family A(E/k) consisting subrings of Rk satisfying the conditions in (B) below.

In the notation below, the bijection is

F 7−→ RF , R 7−→ {y ∈ E |T ◦ yL = yL ◦ T ∀T ∈ R}.

So at least at a formal level this bijection is analogous to the Galois correspondence. In fact
one can deduce from it the Galois correspondence. This problem has several parts, (A) and
(B0)–(B5), with hints.
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Notation/Definition.

i. For every element y ∈ E, denote by yL the element of Rk which sends any z ∈ E to yz.

ii. Let S be the subring of Rk consisting of all endomorphisms yL of (E,+) with y ∈ E.

iii. For every subextension field F/k of E/k, define RF := EndF (E,+) be the ring of all
endomorphisms of the F -vector space underlying E. Clearly this subring RF of Rk

contains S. Left multiplication by elements of S, i.e. y · T := yL ◦ T ∀ y ∈ E, ∀T ∈ RF ,
gives RF a structure as a vector space over E.

(A) Suppose that F is a subfield of E such that [E : F ] <∞. Show that dimE(RF ) = [E : F ],
where the E-vector space structure of RF is given above in iii.

(B) Suppose that R is a subring of Rk (containing 1 by our convention) such that

R is a finite dimensional E-vector subspace of Rk

The last condition means that yL ◦ T ∈ R for all y ∈ E and all T ∈, and there ex-
ists elements T1, . . . , Tm ∈ R such that every element of R can be written as a linear
combination

∑m
i=1 yi,L ◦ Ti with y1, . . . , ym ∈ E. Let

F := {y ∈ E |T ◦ yL = yL ◦ T ∀T ∈ R}.

It is easily checked that F is a subfield of E containing k; this is part (1) below. Follow
the steps below to show that there exists a subextension [E : F ] <∞ and R = RF .

(B0) Show that F is a subfield of E containing k. Note that R ⊆ RF by definition.

(B1) Consider the k-linear map

β : E → HomE(R,E), β(y)(T ) := T (y) ∀ y ∈ E, ∀T ∈ R.

and the induced E-linear map

β̃ : E ⊗k E → HomE(R,E),
∑
j

(zj ⊗ yj)(T ) :=
∑
j

zj T (yj)

for all elements
∑

j(zj ⊗ yj) ∈ E ⊗k E. Show that the E-linear span of β(E) is equal

to HomE(R,E); in other words the E-linear map β̃ is a surjection, or equivalently β(E)
contains an E-basis of HomE(R,E). Here the E-module structure of E ⊗k E is through
the first factor of E ⊗k E.

(Hint: Suppose that β̃(E) ( HomE(R,E). Use basic facts about duals vector spaces to
get a contradiction.)

(B2) Conclude from (1) that there exists an E-basis T1, . . . , Tn of the E-submodule R ⊆ Rk

and elements y1, . . . , yn ∈ E such that

Ti(yj) = δij ∀ i, j = 1, . . . , n,

where n = dimE(R).
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For such elements T1, . . . , Tn ∈ R and y1, . . . , yn ∈ E, show that

T =

n∑
i=1

T (yi)L ◦ Ti ∀T ∈ R.

(B3) Use the last displayed equality in (2) to show that for any i, j = 1, . . . , n and any y ∈ E,
we have

Tj ◦ yL ◦ Ti = Tj(y)L ◦ Ti.

Conclude that Tj(y) ∈ F for all y ∈ E and all j = 1, . . . , n.

(B4) Given any y ∈ E, consider the element

y′ := y −
n∑

j=1

Tj(y) · yj .

Show that Ti(y
′) = 0 for all i = 1, . . . , n. Conclude that T (y′) = 0 for all T ∈ R, and

hence y′ = 0 because R contains idE .

(B5) Show that y1, . . . , yn are linearly independent over F , so that [E : F ] = n and also that
dimE(RF ) = n. Conclude that R = RF .
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