Math 603 Assignment 10, 2020-21

1. In the proof of Brauer's theorem on $2 / 08 / 2021$, we use the following fact, proved by direct computation:

Let G be a finite group, and let $g:=\operatorname{card}(G)$. Let $\mathcal{O}=\mathcal{O}_{\mathbb{Q}\left(\mu_{g}\right)}=\mathbb{Z}\left[\mu_{g}\right]$. Suppose that f is a \mathbb{Z}-valued class function on a finite group G such that $f(x) \equiv 0(\bmod g)$ for every $x \in G$. Then f is an \mathcal{O}-linear combination of characters of G induced from cyclic subgroups.

If we change " \mathcal{O}-linear combination" to "Z-linear combination" in the above statement, is the resulting statement true? (Either prove the statement is true, or prove that it is false.)
2. Let G be a finite group, and let $g:=\operatorname{card}(G)$. Let p be a prime number. Let $\mathcal{O}=\mathcal{O}_{\mathbb{Q}\left(\mu_{g}\right)}=$ $\mathbb{Z}\left[\mu_{g}\right]$. Let x be an element of G, and let $x=x_{r} x_{s}$ be the canonical decomposition of x as the product of its p-regular part and p-singular part, i.e. $x_{r}, x_{s} \in x^{\mathbb{Z}}$, the order of x is prime to p, and the order of x_{s} is a power of p.

In the proof of Brauer's theorem on $2 / 08 / 2021$, we used the following statement. (The proof is based on the observation that $h(x)^{p^{N}} \cong h\left(x_{r}\right)^{p^{N}}(\bmod p \mathcal{O})$, for any positive integer N such that $x_{s}^{p^{N}}=1$.)

Let $h: G \rightarrow \mathbb{Z}$ be a \mathbb{Z}-valued class function on G which is an \mathcal{O}-linear combination of characters of G. Then $h(x) \equiv h\left(x_{r}\right)(\bmod p)$.

If we delete the clause "which is an \mathcal{O}-linear combination of characters of G " from the above statement, is the resulting statement true? (Either prove the statement is true, or prove that it is false.)
3. Let G be a finite p-group. Let χ be an irreducible character of G. Show that the sum

$$
\sum_{\psi \text { irred, } \psi(1)<\chi(1)} \psi(1)^{2} \equiv 0 \quad\left(\bmod \chi(1)^{2}\right),
$$

where ψ in the sum runs through all irreducible characters of G such that $\psi(1)<\chi(1)$. (Hint: Recall that the degree of every irreducible character of a finite group G divides the cardinality of G.)
4. (a) Is the alternating group A_{4} solvable? Is it supersolvable? Is it nilpotent?
(b) The group A_{4} has an irreducible character χ with $\chi(1)=3$. Determine whether χ is induced from a proper subgroup of A_{4}.
5. Let $(V$, std $)$ be the standard 5 -dimensional permutation representation of the symmetric group S_{5}. Splitting off a copy of the trivial representation of S_{5}, we get a 4 -dimensional representation of U of S_{5}.
(a) Determine whether U is an irreducible representation of S_{5}.
(b) Determine whether the second exterior product $\bigwedge^{2} U$ is in irreducible representation of S_{5}.
(c) Find all one-dimensional characters of S_{5}.
(Note that the product of an irreducible character of a finite group G with a onedimensional character of G is again irreducible.)
(d) Let (W, η) be the permutation representation of S_{5} corresponding to the action of S_{5} on the set T consisting of all unordered pairs $\{a, b\}$, with $a \neq b \in\{1,2,3,4,5\}$. Show that (W, η) is isomorphic to the second symmetric product $S^{2} U$ of the representation U of S_{5}.
(d) Determine whether (W, η) is an irreducible representation of S_{5}. If not, decompose the character of (W, η) as a sum of irreducible characters of S_{5}.
(f) Determine the character table of S_{5} using results you found in (a)-(e). (You should find 7 irreducible characters; $1^{2}+1^{2}+4^{2}+4^{2}+5^{2}+5^{2}+6^{2}=120$.)
6. We use the notation in question 5 above.
(a) Determine whether the restriction $\operatorname{Res}_{A_{5}}^{S_{5}}(U)$ to the alternating subgroup $A_{5} \leq S_{5}$ is an irreducible representation of A_{5}.
(b) Determine whether $\operatorname{Res}_{A_{5}}^{S_{5}}\left(\bigwedge^{2} U\right)$ is an irreducible representation of A_{5}.
(c) For each irreducible character χ of S_{5} with $\chi(1) \geq 2$, determine whether $\operatorname{Res}_{A_{5}}^{S_{5}}(\chi)$ is irreducible. In case $\operatorname{Res}_{A_{5}}^{S_{5}}(\chi)$ is, decompose $\operatorname{Res}_{A_{5}}^{S_{5}}(\chi)$ as a sum of irreducible characters of A_{5}.
7. We use the notation in question 5 above.
(a) Determine whether the representation U of S_{5} is induced from a representation of a proper subgroup of S_{5}.
(b) Determine whether the representation $\operatorname{Res}_{A_{5}}^{S_{5}}(U)$ of A_{5} is induced from a representation of a proper subgroup of A_{5}
(c) (extra credit) For each irreducible character χ of S_{5} with $\chi(1) \geq 2$, determine whether χ is induced from a proper subgroup of S_{5}.
8. Let G be a finite group. For each cyclic subgroup A of G, let

$$
\lambda_{A}:=\phi(a) \operatorname{reg}_{A}-\theta_{A},
$$

where $\phi(a)=\operatorname{card}\left((\mathbb{Z} / a \mathbb{Z})^{\times}\right), \operatorname{reg}_{A}$ is the regular representation of A, and θ_{A} is the \mathbb{Z}-valued function on A such that for any element $x \in A, \theta_{A}(x)=a$ if x generates A, and $\theta_{A}(x)=0$ otherwise. Prove that

$$
\sum_{A \leq G, A \text { cyclic }} \operatorname{Ind}_{A}^{G}\left(\lambda_{A}\right)=\operatorname{card}(G) \cdot\left(\operatorname{reg}_{G}-1\right) .
$$

