Some old exam problems, April 15, 2023

1. Prove that for any complex number z not equal to a negative integer,

$$
\Gamma(2 z)=\pi^{-\frac{1}{2}} 2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) .
$$

Pay particular attention to the constants involved.
2. Show that

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x=\frac{\pi}{e}
$$

3. Show that the function

$$
f(z):=\sum_{n=1}^{\infty} e^{-n} \sin n z
$$

is holomorphic in the strip $-1<\operatorname{Im}(z)<1$.
4. Show that $F(z)=\sin \pi z$ is the only entire function which satisfies the following properties:

1. $F(z)=F(z+1)$ for all $z \in C$.
2. $F(0)=0$ and $F\left(\frac{1}{2}\right)=1$.
3. $|F(x+i y)| \leq e^{\pi|y|}$ for all $x, y \in \mathbb{R}$.
4. Show that the unit disk $\{z \in \mathbb{C}||z|<1\}$ is NOT conformally equivalent to the annulus $\{z \in \mathbb{C}|1<|z|<2\}$.
5. For each of the following statements, mark whether they are true or false. No work needs to be shown for this problem. (5 problems, 4 points each)
6. The winding number is always an integer.
7. A non-zero holomorphic function $f(z)$ can have a distinct sequence $z_{n} \rightarrow z_{0}$ and $f\left(z_{n}\right)=0$.
8. A non-zero holomorphic function $f(z)$ can have a distinct sequence $z_{n} \rightarrow z_{0}$ and $f\left(z_{n}\right)=0$.
9. A bounded entire function must be constant.
10. Nearby an essential singularity z_{0}, a holomorphic function (except at z_{0}) takes on every value in the complex plane.
11. A meromorphic function can have only isolated zeroes and poles.
12. Answer the following questions.
13. What is a Laurent series expansion? State it carefully.
14. Find the Laurent series expansion in powers of z around $z=0$ for the function

$$
f(z)=\frac{1}{z^{2}(1-z)}
$$

and say where the series converges.
3. Find the Laurent series expansion in powers of z around $z=0$ for the function

$$
g(z)=z^{2} \sin \left(\frac{1}{z^{2}}\right)
$$

and where does the Laurent expansion for $g(z)$ converge?
8.

1. Give the full general definition of a residue (including how to calculate it).
2. State completely and precisely the Cauchy Residue Theorem.
3. Calculate all the residues of

$$
f(z)=\frac{z+1}{z^{2}-2 z}
$$

4. Calculate the following integral

$$
\int_{|z|=\rho} \frac{z+1}{z^{2}-2 z} d z,
$$

both when $0<\rho<1$ and when $1<\rho<\infty$.
9.
(a) (5 points) State Rouché's theorem.
(b) (10 points) How many zeros (counting multiplicities) does the function $f(z)=e^{z}-3 z^{2}$ have inside the unit circle $\{z \in \mathbb{C}||z|=1\}$? Justify your answer.
(c) (5 points) How many distinct zeros (i.e. zeroes of multiplicity 1) does $f(z)=e^{z}-3 z^{2}$ have inside the unit circle? Justify your answer.
10.
(a) (5 points) State Liouville's Theorem.
(b) (10 points) Prove or disprove: The image of \mathbb{C} under a nonconstant entire mapping is dense in \mathbb{C}. (Hint: The mapping having an image that is dense in \mathbb{C} means that the values of the mapping come arbitrarily close to every complex number. Recall how the Casorati-Weierstrass Theorem was proven.)
11.
(a) (5 points) Give the definition of a residue.
(b) (5 points) Determine and classify all singularities of

$$
f(z)=z^{3} e^{\frac{1}{z}}+\frac{z^{2}}{(z-1)^{3}} .
$$

(c) (10 points) Compute the residues of $f(z)$ at the singularities you found in part (b). (Hint: What is the expansion of $e^{\frac{1}{z}}$ formally? It might be easier computing these DIRECTLY from the definition of a residue.)

