Some old exam problems, March 15, 2023

1.(a) Find all complex zeros of $\cos z-\sin z$.
(b) What is the radius of convergence of the power series of

$$
f(z)=\frac{1}{\cos z-\sin z}
$$

around $z=0$? Justify your answer. (Hint: DO NOT expand this into a power series. You should be able to see the radius without any computation.)
2. Show that

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x} d x=\pi
$$

3. Find all zeros of the rational function

$$
\frac{z^{3}-7 z^{2}+15 z-9}{z^{2}+3 z-4}
$$

and determine their orders.
4. Show that

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+a^{2}} d x=\frac{\pi \log a}{2 a} \text { when } a>0 .
$$

5. Identify all zeros, poles, removable singularities, and/or essential singularities. For zeros and poles, give the orders. Be sure to consider the point at ∞. You do not need to compute residues.

$$
f(z):=\frac{1}{z} \sin \left(\frac{\pi z}{1-z}\right)
$$

6. Determine all possible values of
(a) $\log (i)$
(b) \sqrt{i}
(c) $(3 i)^{i}$
(d) 5^{i}
7. Let p_{n} be the degree n Taylor polynomial of e^{z}, i.e., $p_{n}(z):=\sum_{k=0}^{n} \frac{z^{k}}{k!}$.
(a) For any $n \geq 1$ and any k between 1 and n, show that

$$
\frac{|z|^{n-k}}{(n-k)!} \leq \frac{|z|^{n}}{n!}\left(\frac{n}{|z|}\right)^{k}
$$

Conclude that $p_{n}(z)$ has n zeros on the disk $|z| \leq 2 n$ for each positive integer n.
(b) Show that for any $n \geq 1$

$$
\frac{|z|^{n}}{n!}<\delta^{n} e^{\delta^{-1}|z|} \text { for any } \delta>0
$$

Prove that there is a $\delta_{0}>0$ such that, for all $n \geq 1$, none of the zeros of p_{n} lie in the disk $|z| \leq \delta_{0} n$.
Hint: Don't worry about the exact value of δ_{0} - just prove the statement for δ_{0} sufficiently small.
7. Suppose the Taylor series for $\tan z$ is given by $\tan z=\sum_{n=0}^{\infty} c_{n} z^{n}$ for some constants c_{n}.
(a) Prove that

$$
\frac{1}{z-\frac{\pi}{2}}+\frac{1}{z+\frac{\pi}{2}}+\tan z
$$

is holomorphic on the disk $|z|<\frac{3 \pi}{2}$ (in particular, show that the apparent singularities are removable).
(b) Conclude that for any $\delta>\frac{2}{3 \pi}$, there is a finite constant C_{δ} such that

$$
\left|c_{n}-\frac{2^{n+2}}{\pi^{n+1}}\right| \leq C_{\delta} \delta^{n}
$$

whenever n is odd. This means that the odd coefficients in the Taylor series for $\tan z$ are equal to $2^{n+2} \pi^{-n-1}$ up to an error which is proportionally much smaller than this as $n \rightarrow \infty$. Hint: Use the Cauchy inequalities.
8. For each of the following statements, mark whether they are true or false.
(a) The winding number is always an integer.
(b) A non-zero holomorphic function $f(z)$ can have a distinct sequence $z_{n} \rightarrow z_{0}$ and $f\left(z_{n}\right)=0$.
(c) A bounded entire function must be constant.
(d) Nearby an essential singularity z_{0}, a holomorphic function (except at z_{0}) takes on every value in the complex plane.
(e) A meromorphic function can have only isolated zeroes and poles.

