Some old exam problems, March 15, 2023

1.(a) Find all complex zeros of $\cos z - \sin z$.

(b) What is the radius of convergence of the power series of

$$f(z) = \frac{1}{\cos z - \sin z}$$

around z = 0? Justify your answer. (Hint: **DO NOT** expand this into a power series. You should be able to see the radius without any computation.)

2. Show that

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi.$$

3. Find all zeros of the rational function

$$\frac{z^3 - 7z^2 + 15z - 9}{z^2 + 3z - 4}$$

and determine their orders.

4. Show that

$$\int_0^\infty \frac{\log x}{x^2 + a^2} dx = \frac{\pi \log a}{2a} \text{ when } a > 0.$$

5. Identify all zeros, poles, removable singularities, and/or essential singularities. For zeros and poles, give the orders. Be sure to consider the point at ∞ . You do not need to compute residues.

$$f(z) := \frac{1}{z} \sin\left(\frac{\pi z}{1-z}\right)$$

- 6. Determine all possible values of
 - (a) $\log(i)$
 - (b) \sqrt{i}
 - (c) $(3i)^i$
 - (d) 5^i

6. Let p_n be the degree *n* Taylor polynomial of e^z , i.e., $p_n(z) := \sum_{k=0}^n \frac{z^k}{k!}$.

(a) For any $n \ge 1$ and any k between 1 and n, show that

$$\frac{|z|^{n-k}}{(n-k)!} \le \frac{|z|^n}{n!} \left(\frac{n}{|z|}\right)^k.$$

Conclude that $p_n(z)$ has n zeros on the disk $|z| \leq 2n$ for each positive integer n.

(b) Show that for any $n \ge 1$

$$\frac{|z|^n}{n!} < \delta^n e^{\delta^{-1}|z|} \text{ for any } \delta > 0.$$

Prove that there is a $\delta_0 > 0$ such that, for all $n \ge 1$, none of the zeros of p_n lie in the disk $|z| \le \delta_0 n$.

Hint: Don't worry about the exact value of δ_0 —just prove the statement for δ_0 sufficiently small.

- 7. Suppose the Taylor series for $\tan z$ is given by $\tan z = \sum_{n=0}^{\infty} c_n z^n$ for some constants c_n .
 - (a) Prove that

$$\frac{1}{z - \frac{\pi}{2}} + \frac{1}{z + \frac{\pi}{2}} + \tan z$$

is holomorphic on the disk $|z| < \frac{3\pi}{2}$ (in particular, show that the apparent singularities are removable).

(b) Conclude that for any $\delta > \frac{2}{3\pi}$, there is a finite constant C_{δ} such that

$$\left|c_n - \frac{2^{n+2}}{\pi^{n+1}}\right| \le C_\delta \delta^n$$

whenever n is odd. This means that the odd coefficients in the Taylor series for $\tan z$ are equal to $2^{n+2}\pi^{-n-1}$ up to an error which is proportionally much smaller than this as $n \to \infty$. Hint: Use the Cauchy inequalities.

- 8. For each of the following statements, mark whether they are true or false.
 - (a) The winding number is always an integer.
 - (b) A non-zero holomorphic function f(z) can have a distinct sequence $z_n \to z_0$ and $f(z_n) = 0$.
 - (c) A bounded entire function must be constant.
 - (d) Nearby an essential singularity z_0 , a holomorphic function (except at z_0) takes on every value in the complex plane.
 - (e) A meromorphic function can have only isolated zeroes and poles.