Math 4100 Homework 9, Spring 2023

Part 1. From Ash-Novinger, Complex Variables.

- Ch. 4 , pp. 24-25, \#2, \#6
- Ch. 4, pp. 30-31, \#1
- Ch. 6, p. $5, \# 5$

Part 2.
(1) Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ a conformal automorphism of \mathbb{C}, i.e. f is holomorphic, one-to-one and onto.
(a) The great Picard's theorem asserts that for every entire function on \mathbb{C} with essential singularity at ∞, there exists a point $z_{0} \in \mathbb{C}$ such that for every $z \in \mathbb{C} \backslash\left\{z_{0}\right\}$, the inverse image $h^{-1}(z)$ of z is in infinite set. Use this fact to show that f is meromorphic at ∞.
(b) Prove that f is induced by a unique linear fractional transformation.
(2) (extra credit) Let $a \neq b$ be two complex numbers. Consider linear fractional transformations of the form

$$
w=T_{k}(z)=k \cdot \frac{z-a}{z-b}, \quad k \neq 0, k \in \mathbb{C}
$$

(i) Show that circles on the z-plane passing through a and b are inverse images under T_{k} of straight lines through the origin of the w-plane.
(ii) Show that for each positive real number $\alpha>0$, the set

$$
\{z \in \mathbb{C}:|z-a|=\alpha \cdot|z-b|\}
$$

is a circle on the z-plane if $\alpha \neq 1$ and is the line orthogonal to the line segment $\overline{a b}$ passing through the midpoint of $\overline{a b}$. Moreover it is the inverse image under T_{k} of the circle

$$
|w|=\alpha \cdot|k|
$$

on the w-plane.
(iii) The two families of circles, $\left\{C_{1}\right\}$ in (i) $\left\{C_{2}\right\}$ and (ii) above are called the Steiner circles determined by a and b. Show the following.

* Every C_{1} meets every C_{2} in right angles.
* There is exactly on C_{1} and one C_{2} passing through any given point on the z-plane.
* Each reflection about a C_{1} transforms every C_{2} to itself and preserves the family $\left\{C_{1}\right\}$. Each reflection about a C_{2} transforms every C_{1} to itself and preserves the family $\left\{C_{2}\right\}$.
(3) (extra credit) Let T be the linear fractional transformation attached to an invertible 2×2 matrix A.
(i) Show that T has two distinct fixed points $a \neq b \in \hat{\mathbb{C}}$, i.e. $T(a)=a$ and $T(b)=b$ if and only if A is diagonalizable over \mathbb{C}. If so, show that there exists a non-zero complex number $0 \neq k \in \mathbb{C}$ such that $w=T(z)$ satisfies

$$
\frac{w-a}{w-b}=k \cdot \frac{z-a}{z-b}
$$

(Such a linear fractional transformation is said to be hyperbolic if $k \in \mathbb{R}$, elliptic if $|k|=1$.) Note that T can be both hyperbolic and elliptic, in which case T^{2} is the identity map on \hat{C}.)
(ii) Show that T has exactly one fixed point if and only if the linear fractional transformation A is not diagonalizable over \mathbb{C}.
(Such a linear fractional transformation is said to be parabolic. A linear fractional transformation which is neither hyperbolic, elliptic, nor parabolic is said to be loxodromic.)

