Math 4100 Homework 8, Spring 2023

Part 1. From Ash-Novinger, Complex Variables.

- Ch. 4, p. 17, $\# 1, \# 3$
- Ch. 4 , pp. 20-21, \#2, \#4

Part 2.
(1) Let $\tau: \mathbb{C} \rightarrow \mathbb{C}$ be the complex conjugation $z \mapsto \bar{z}$.
(a) Let $\gamma_{1}:[0,1] \rightarrow \mathbb{C}$ and $\gamma_{2}:[0,1] \rightarrow \mathbb{C}$ be two smooth curves on \mathbb{C} such that $\gamma_{1}(0)=\gamma_{2}(0)$. Show that the angle at $\gamma_{1}(0)$ between the two curves γ_{1} and γ_{2} is equal to the angle at $\overline{\gamma_{1}(0)}$ between $\tau \circ \gamma_{1}$ and $\tau \circ \gamma_{2}$.
(b) Prove that τ is not equal to a linear fractional transformation. (Note: you need to show that for every invertible 2×2 matrix A with complex coefficients, τ is not equal to the linear fractional transformation attached to A.)
(2) (extra credit) For every positive integer n, denote by C_{n} the square whose vertices are $\left(n+\frac{1}{2}\right)(\pm 1 \pm \sqrt{-1}$. Prove that there exists a constant $M>0$ such that

$$
|\cot (\pi z)| \leq M \quad \text { and } \quad|\csc (\pi z)| \leq M
$$

for all positive integer n.
(3) (extra credit) We keep the notation in problem 2 above, and consider the integral

$$
\oint_{C_{n}} d z
$$

where $a \in \mathbb{R} \backslash \mathbb{Z}$ is a real number and is not an integer.
(a) Find all singularities of the meromorphic function $\frac{\cot (\pi z)}{(a+z)^{2}}$ on \mathbb{C} and compute the residues at the singularities.
(b) Calculate the sum of the infinite series

$$
\sum_{-\infty}^{\infty} \frac{1}{(a+n)^{2}}
$$

