Math 4100 Homework 4, Spring 2023

Part 1. From Ash-Novinger, Complex Variables.

- Ch. 2, pp. 26-28, \#7, \#11, \#19, \#24

Part 2.
(1) Find the Taylor series expansion of the rational function

$$
f(z)=\frac{1+2 z}{1-z^{3}}
$$

explicitly.
(2) Suppose that $f(z)$ is a complex analytic function on the whole complex plane, and there is a sequence of non-zero complex numbers $a_{0}, a_{1}, a_{2}, \ldots$ such that

$$
f\left(z+a_{i}\right)=f(z) \quad \text { for all } z \in \mathbb{C} .
$$

Is $f(z)$ a constant function? Either prove this statement, or give a counter-example.
(3) (extra credit) For what values of z is the series

$$
\sum_{n=0}^{\infty}\left(\frac{z}{1-z}\right)^{n}
$$

convergent?

Some problems from past exams, not part of the homework assignment. (These are among the harder one.)

1. (a) Write down a fractional linear transformation $S(z)$ that maps $-i, 0$, and i into $0, i$, and $2 i$ respectively. (If you wish, you may leave the answer as a composition of functions no need to simplify.)
(b) Is the transformation from part (a) the unique one with such properties? Justify your answer.
2. (a) Write down a fractional linear transformation $S(z)$ that maps $-i, 0$, and i into $0, i$, and $2 i$ respectively. (If you wish, you may leave the answer as a composition of functions no need to simplify.)
Is the transformation from part (a) the unique one with such properties? Justify your answer.
3. Let Ω be an open disk, and suppose that f and g are holomorphic functions on Ω which satisfy the equality

$$
\Re(f(z))=\Re(g(z)) \text { for all } z \in \Omega
$$

Prove that there is a real constant c such that

$$
f(z)=g(z)+i c \text { for all } z \in \Omega
$$

4. (a) Find the complex zeros of $\cos z-\sin z$.
(b) What is the radius of convergence of the power series of

$$
f(z)=\frac{1}{\cos z-\sin z}
$$

around $z=0$? Justify your answer. (Hint: DO NOT expand this into a power series. You should be able to see the radius without any computation.)
5. Let $P(z)=a_{0}+a_{1} z+\cdots+a_{k} z^{k}$ be a complex polynomial. Suppose $|P(z)| \leq 1$ whenever $|z| \leq 1$. Show that $\left|a_{n}\right| \leq 1$ for all $n=0,1, \ldots, k$. (Hint: Apply Cauchy's Representation Formula for derivatives.)

