Math 4100 Homework 10, Spring 2023

Part 1. From Ash-Novinger, Complex Variables.

- Ch. 6, p. 5, \#6
- Ch. 6, p. 9, \#1(c), \#2

Part 2.

1. What are the residues of $\Gamma(z)$ at its poles?
2. (a) Prove that $\Gamma(\bar{z})=\overline{\Gamma(z)}$ for all $z \in \mathbb{C} \backslash \mathbb{Z}_{\leq 0}$.
(b) Prove that

$$
|\Gamma(\sqrt{-1} y)|^{2}=\frac{\pi}{y \sinh (\pi y)}, \quad\left|\Gamma\left(\frac{1}{2}+\sqrt{-1} y\right)\right|^{2}=\frac{\pi}{\cosh (\pi y)}
$$

for all $y \in \mathbb{R}$.
3. (extra credit) Show that the improper integrals

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x, \quad \int_{0}^{\infty} \cos \left(x^{2}\right) d x
$$

converge, and evaluate them.
4. (extra credit) This problem leads to another integral representation of $\Gamma(z)$. Fix a positive number δ, and let $C_{\rho, \epsilon}$ be a contour which starts from a point $\rho>0$ on the real axis, goes up to $\rho+\sqrt{-1} \epsilon$ for a small positive number ϵ, then goes to the left along a horizontal line parallel to the x-axis, circle the origin counter-clockwise, then go to the right along a horizontal line parallel to the x axis to reach $\rho-\sqrt{-1} \epsilon$, and finally back to ρ. Let C be a "limit contour" of $C_{\rho, \epsilon}$ as $\rho \rightarrow \infty$. Show that

$$
\Gamma(w)=-\frac{1}{2 \sqrt{-1} \sin (\pi w)} \int_{C}(-z)^{w-1} e^{-z} d z
$$

where $(-z)^{w-1}=e^{(w-1) \log (-z)}$, with $-\pi<\arg (-z) \leq \pi$ and $\log (-z)$ takes real values for z on the negative real axis.
(Hint: Compare the values of $(-z)^{w-1}$ on "upper horizontal part" and the "lower horizontal part" of $C_{\rho, \epsilon}$, estimate the integral over the small circle of radius ϵ, and use the integral representation of $\Gamma(w)$ when $\operatorname{Re}(w)>0$.)

