Math 4100 Homework 1, Spring 2023

Part 1. From Ash-Novinger, Complex Variables, Chapter 1, pp. 9-10

- \#6
- \#12
- \#16

Part 2.
(1) Describe geometrically the sets of points determined by the relations:
(a) $|z+i|<5$;
(b) $2>\operatorname{Re}\{z\}>-3$;
(c) $(\operatorname{Im}\{z\})^{2} \leq \operatorname{Re}\{z\}$;
(d) $|2 i-z|=|z+1+3 i|$;
(e) $\operatorname{Re}\{(3-4 i) z\}<0$;
(f) $2 \operatorname{Re}\{z\}<|z|^{2}$.
(2) The trigonometric functions $\cos z, \sin z: \mathbb{C} \rightarrow \mathbb{C}$ are defined by

$$
\cos z=\frac{e^{\sqrt{-1} z}+e^{-\sqrt{-1} z}}{2}, \quad \sin z=\frac{e^{\sqrt{-1} z}-e^{-\sqrt{-1} z}}{2 \sqrt{-1}} .
$$

The functions $\tan z, \cot z, \sec z, \csc z$ are defined in terms of $\cos z$ and $\sin z$ as usual.
(a) Find the values of $\sin \sqrt{-1}, \cos \sqrt{-1}$ and $\tan (1+\sqrt{-1})$.
(b) Use the addition formula to separate $\cos (x+\sqrt{-1} y)$ and $\sin (x+\sqrt{-1} y)$ into real and imaginary parts, where x, y are real numbers.
(c) Determine the subset of \mathbb{C} consisting of all complex numbers z such that $\sin z=0$.
(3) (extra credit) Let n be a positive integer, and let $a \neq 0$ be a complex number.
(a) Show that there are exactly n distinct complex numbers z_{1}, \ldots, z_{n} such that $z_{i}^{n}=a$ for $i=1, \ldots, n$.
(b) Show that $z_{1}+\ldots+z_{n}=0$. (Hint: Treat first the case when $a=1$.)

