MATH 4100 HOMEWORK 1, SPRING 2023

Part 1. From Ash–Novinger, Complex Variables, Chapter 1, pp. 9–10

- #6
- #12
- #16

Part 2.

- (1) Describe geometrically the sets of points determined by the relations:
 - (a) |z+i| < 5;
 - (b) $2 > Re\{z\} > -3;$
 - (c) $(Im\{z\})^2 \le Re\{z\};$
 - (d) |2i z| = |z + 1 + 3i|;
 - (e) $Re\{(3-4i)z\} < 0;$
 - (f) $2Re\{z\} < |z|^2$.
- (2) The trigonometric functions $\cos z, \sin z : \mathbb{C} \to \mathbb{C}$ are defined by

$$\cos z = \frac{e^{\sqrt{-1}z} + e^{-\sqrt{-1}z}}{2}, \quad \sin z = \frac{e^{\sqrt{-1}z} - e^{-\sqrt{-1}z}}{2\sqrt{-1}}.$$

The functions $\tan z$, $\cot z$, $\sec z$, $\csc z$ are defined in terms of $\cos z$ and $\sin z$ as usual.

- (a) Find the values of $\sin \sqrt{-1}$, $\cos \sqrt{-1}$ and $\tan(1 + \sqrt{-1})$.
- (b) Use the addition formula to separate $\cos(x + \sqrt{-1}y)$ and $\sin(x + \sqrt{-1}y)$ into real and imaginary parts, where x, y are real numbers.
- (c) Determine the subset of \mathbb{C} consisting of all complex numbers z such that $\sin z = 0$.
- (3) (extra credit) Let n be a positive integer, and let $a \neq 0$ be a complex number.
 - (a) Show that there are exactly n distinct complex numbers z_1, \ldots, z_n such that $z_i^n = a$ for $i = 1, \ldots, n$.
 - (b) Show that $z_1 + \ldots + z_n = 0$. (Hint: Treat first the case when a = 1.)