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In each of the following examples we will give a group G operating on a set S. We will
describe the orbit space G\S in each example, as well as some stabilizer subgroups StabG(x)
for elements x ∈ S. Often we can find a subset F ⊆ G of G such that the composition
F → S → G\S of the inclusion of F ↪→ S and the canonical projection S → G\S is a
bijection; we say that F is a fundamental domain if this is so. Also, recall that for each
x ∈ S, there is a natural bijection from the coset G/StabG(x) to the orbit G · x.

1. Let G = µ2 = {1,−1}, S = R, and the action is induced by multiplication of real
numbers. The for each 0 6= x ∈ R, we have StabG(x) = {1}, and the G-orbit of x is
{x,−x}. On the other hand, StabG(0) = G, and the G-orbit of 0 ∈ S is {0}. The
subset of all non-negative real numbers form a fundamental domain F .

2. Let n be a positive integer, let G = GLn(C) and let S = Mn(C). In this example we
consider the left action of G on S given by matrix multiplication. That is, for g ∈ G
and A ∈ S considered as two n× n matrices, the action is (g, A) 7→ g ·A. Considering
this action is essentially equivalent to the problem of row reduction for n×n matrices.

There is one big orbit, consisting of all invertible n× n matrices; the stabilizer of each
element in this orbit is trivial. There is exactly one fixed point of G, namely the zero
matrix. A fundamental domain is given by the set of all n× n matrices in row reduced
echelon form. Here a matrix is said to be in row reduced echelon form if for each row
of this matrix, the first non-zero entry in this row is equal to 1, this “leading term” 1
is the only non-zero entry in the column it occupies, and the distance of the leading
term to the left edge of the matrix increases as we go down the rows. It is allowed for
some rows to be zero; such zero rows has to “pile up at the bottom”. Here are some
examples of such matrices in the case when n = 3:1 0 0

0 1 0
0 0 1

 ,

1 0 a
0 1 b
0 0 0

 ,

1 a 0
0 0 1
0 0 0

 ,

0 1 0
0 0 1
0 0 0

 ,1 a b
0 0 0
0 0 0

 ,

0 1 a
0 0 0
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 0 0
0 0 0

 .

In fact these gives all row reduced matrices in echelon form when n = 3.

3. Again let n be a positive integer, G = GLn(C), S = Mn(C), just as in example 2 above.
However the action we consider now is given by conjugation: For g ∈ G and A ∈ S
considered as two n × n matrices, the action is (g, A) 7→ g · A · g−1. The problem of
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determining the orbit of this action is essentially this: Given a square matrix A, find a
“simplest” representative in the conjugacy class of A. Of course this is strongly related
to the theory of eigenvalues, eigenvectors and diagonalization. A complete answer is
given by the theory of Jordan canonical forms, which will be discussed in Math 371
using the structure theory of modules over principal ideal domains. In the following
we give a partial description of the set of all G-orbits.

A G-orbit here is nothing other than the GLn(C)-conjugacy class of an n × n ma-
trix A with coefficients in C. All elements in this orbit have the same characteristic
polynomial, given by char(A) := det(X · Id − A). It is easy to see that every monic
polynomial in C[X] of degree n is the characteristic polynomial of some element in
Mn(C). So we have a surjection charn from G\S to the space Monicn(C) of all monic
polynomials of degree n with coefficients in C, given by the characteristic polynomial.
In general this is not a bijection, but finite-to-one: for any monic polynomial f(X)
of degree n, there are a finite number of GLn(C)-conjugacy classes with f(X) as the
characteristic polynomial. If f(X) has n distinct roots, any A ∈Mn(C) with f(X) as
its characteristic polynomial is diagonlizable, hence char−1

n (f(X)) consists of just one
element. On the other hand, if f(X) has multiple roots, then char−1

n (f(X)) has more
than one elements. For instance, if n = 2 and f(X) = (X − λ)2 for some λ ∈ C, then

char2
−1(f(X)) has two elements, represented by

(
λ 0
0 λ

)
and

(
λ 1
0 λ

)
respectively.

4. Let G be a group. The group law of G gives a left action of G on S = G. This action
is usually referred to as the left translation. This action is transitive, i.e. there is only
one orbit. The stabilizer subgroups are all trivial.

Let H be a subgroup of G. The group law of G defines a left action of H on S = G;
this is the restriction of the previous action to the subgroup H. An H-orbit is exactly
a right H-coset, and the orbit space for this action is exactly the space H\G of all
right H-cosets in G. (We designed the notations so that the two meanings of H\G,
one for the H-cosets and the other for the H-orbits, coincide.)

5. As in example 4 above, let G be a group and let S = G. Consider the conjugation
action: g ∈ G sends x ∈ G to g x g−1. The orbits of are simply the conjugacy classes in
G. The stabilizer subgroup of x ∈ G is just the centralizer subgroup ZG(x) of x in G,
consisting of all elements of G which commute with x; it is equal to the whole group
G if and only if x is in the center of G. For a subgroup H of G, its stabilizer subgroup
StabG(H) with respect to the conjugation action is called the normalizer subgroup of
H in G, denoted by NG(H). A subgroup H of G is normal if and only if NG(H) = G.

The orbit space decomposition of S in this case is just the decomposition of G into its
conjugacy classes. This is a very useful tool for studying finite groups. For instance
when the cardinality of G is a power of p, one conclude from the decomposition of G
into conjugacy classes that the center of G is not the trivial subgroup if G is not trivial.
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6. Let G = Z2, S = R2, and the action of G on S is given by vector addition. In this case
the stabilizer subgroup of every point of S is trivial. The subset [0, 1)× [0, 1) of R2 is a
fundamental domain. The orbit space Z2\R2 can be visualized as follows. Start with
the square [0, 1]× [0, 1]. First, identify the top edge and the bottom edge; imagine that
you glue these two edges together to form a cylinder. Then you identify the other two
edges of the square; in the previous mental picture of the cylinder, you glue together
the two rims of the cylinder. Thus we see that Z2\R2 represents a torus, shaped like a
donut.

7. Let S be one of the Platonic solids and G be the group of all symmetries of S. One
of the previous homework problems deals with the case when S is a regular n-gon and
G is the dihedral group D2n. This is the “easy” case. The more interesting cases are
discussed in detail in Artin’s book.
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