Notes on Bessel functions

The Bessel function $J_n(x)$, $n \in \mathbb{N}$, called the Bessel function of the first kind of order n, is defined by the absolutely convergent infinite series

$$J_n(x) = x^n \sum_{m \ge 0} \frac{(-1)^m x^{2m}}{2^{2m+n} m! (n+m)!} \quad \text{for all } x \in \mathbb{R}.$$
 (1)

It satisfies the Bessel differential equation

$$x^{2} J_{n}''(x) + x J_{n}'(x) + (x^{2} - n^{2}) J_{n}(x) = 0.$$
⁽²⁾

The Bessel functions most relevant to this course are $J_0(x)$ and the closed related function $J_1(x)$. The function $J_0(x)$ is an even function, while $J_1(x)$ is odd; similarly for other $J_n(x)$'s, depending on the parity of n. We have

$$J'_0(x) = -J_1(x), \qquad J'_1(x) = J_0(x) - \frac{1}{x} J_1(x).$$
(3)

Using the differential equations (3) and (2), it is not difficult to show that

$$\int x J_0^2(\alpha x) \, dx = \frac{x^2}{2} [J_0^2(\alpha x) + J_1^2(\alpha x)] + \text{Const.}$$
(4)

for all $\alpha \in \mathbb{R}$, and

$$(\beta^2 - \alpha^2) \int x J_0(\alpha x) J_0(\beta x) \, dx = x \left[\alpha J_0'(\alpha x) J_0(\beta x) - \beta J_0'(\beta x) J_0(\alpha x) \right] + \text{Const.}$$
(5)

for all $\alpha, \beta \in \mathbb{R}$. From (5) and (4) one deduces

$$\int_{0}^{1} x J_{0}(\alpha x) J_{0}(\beta x) \, dx = 0 \tag{6}$$

if $J_0(\alpha) = J_0(\beta) = 0$, $\alpha, \beta > 0$, and $\alpha \neq \beta$. Moreover

$$\int_0^1 x J_0^2(\alpha x) \, dx = \frac{1}{2} [J_0^2(\alpha) + J_1^2(\alpha)] \tag{7}$$

if $J_0(\alpha) = 0$.

Exercise 1. Verify the equations (4), (5).

Exercise 2. Use the equation (2) to show that if α is a repeated root of $J_0(x)$ (i.e. $J_0(\alpha) = J'_0(\alpha) = 0$), then $J^{(n)}(\alpha) = 0$ for all $n \ge 0$. Conclude that $J_0(x)$ has no multiple root. (Hint: If α is a multiple root, the Bessel differential equation implies that the second derivative of $J_0(x)$ vanishes at α . Differentiate the Bessel differential equation, use it to conclude that the third derivative of the Bessel differential equation vanishes at α . Similarly for higher order derivatives.)

For large values of x, $J_n(x)$ behaves like a damped harmonic oscillator:

$$J_n(x) \sim \sqrt{\frac{2}{\pi x}} \cos(x - \frac{n\pi}{2} - \frac{\pi}{4}),$$
 (8)

in the sense that

$$\lim_{x \to \infty} \frac{\sqrt{\frac{2}{\pi x}} \cos(x - \frac{n\pi}{2} - \frac{\pi}{4})}{J_n(x)} = 1.$$

Exercise 3. Use Maple to demonstrate the following statements.

(a) For large values of $x \in \mathbb{R}$, the *envelope* of $J_0(x)$ is

$$\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \cos\left(x - \frac{\pi}{4}\right)$$

(Use several frames with different ranges of (large) values of x.)

- (b) For large values of $x \in \mathbb{R}$, the difference of consecutive zeroes of $J_0(x)$ is close to π .
- (c) The zeroes of $J_1(x)$ interlace with the zeroes of $J_0(x)$.