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Final examination, Math 241: Calculus IV

December 15, 2000, 11:00AM–1:00PM

No books, papers, calculators or electronic device may be used,

other than a hand-written note sheet at most 5′′ × 7′′ in size.

This examination consists of eleven multiple-choice questions and two long-answer questions. The
multiple-choice questions are worth seven points each, with no partial credit. The correct and most
appropriate answer to a multiple-choice question will be, in each case, just one of the seven choices
(A), (B), (C), (D), (E), (F), or (G). Answer all multiple-choice questions on the answer sheet, which
is page 14 of this exam. Only the answers on the answer sheet will be considered for grading.

The long-answer questions are worth twelve points each. You must show all your work and
box your answers. Partial credits will be given only when a substantial part of a problem has
been worked out. Merely displaying some formulas is not sufficient ground for receiving partial
credit.
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1. Let f(x) be a continuous periodic function of period 1, which has a complex Fourier
series expansion of the form ∑

n∈Z

cn e
2πi n x .

Suppose that f(x) + f(−x) = 2 cos(2πx) for all x. Which of the following statements
is true?

A. c1 = 0

B. cn = c−n for all n ∈ Z
C. cn + c−n = 0 for all n ∈ Z
D.
∑

n∈Z (−1)n cn = 0

E.
∑

n∈Z cn = 0

F. c0 = 0

G. None of the above.

Ans. F. In fact cn + c−n = 0 if n 6= ±1, c1 + c−1 = 1

2. Which of the following statements is true?

A. lim
r→∞

−π4≤θ≤
π
4

eire
iθ

= 0

B. lim
r→∞

−π4≤θ≤
π
4

e−ire
iθ

= 0

C. lim
r→∞

−π4≤θ≤
π
4

ere
iθ

= 0

D. lim
r→∞

−π4≤θ≤
π
4

e−re
iθ

= 0

E. lim
r→∞

−π4≤θ≤
π
4

er
2e2iθ = 0

F. lim
r→∞

−π4≤θ≤
π
4

e−r
2e2iθ = 0

G. None of the above.

Ans. D.
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3. For every positive real number R, let

CR = {z ∈ C : |z| = R, Im(z) ≤ 0}

be the lower part of the circle {|z| = R}, from−R to R, on the complex plane. Consider
the limit

lim
R→∞

∮
CR

eiz

z2 + 1
dz .

Which of the following statements is true?

A. The limit is equal to 0.

B. The limit is equal to e−1

2
.

C. The limit is equal to 2π.

D. The limit is equal to −e.
D. The limit is equal to e−1 − e.
F. The limit is equal to e−1.

G. None of the above.

Ans. D.

4. Let f(x) be the function on R such that f(x+ 2π) = f(x) for all x ∈ R, and

f(x) = ex if π ≤ x ≤ π .

Let
∑
n∈Z

cn e
inx be the complex Fourier series for f(x). Which of the following state-

ments is true?

A. Each cn is a real number.

B. c0 = 0

C. limn→∞ cn = 1

D. cn /∈ R for each n ∈ Z
E. c1 = 1

2π

F.
∑

n∈Z cn = 1

G. None of the above.

Ans. F
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5. Suppose that f(t) is a piecewise smooth function on R≥0 such that its Laplace transform

L{f(t)}(s) is equal to
2 e−3s

(s− 2)2
. Which of the following statements is true?

A. limt→1+ f(t) = 0

B. limt→1+ f(t) = e3

C. limt→2+ f(t) = e−2

D. limt→2+ f(t) = −e
E. limt→4+ f(t) = 1

F. No such function f(t) exists.

G. None of the above.

Ans. A.

6. Suppose that f(t) is a piecewise smooth function on R≥0 such that its Laplace transform

L{f(t)}(s) is equal to
es

s− 1
. Which of the following statements is true?

A. limt→1+ f(t) = 0

B. limt→1+ f(t) = e

C. limt→2+ f(t) = 2

D. limt→2+ f(t) = e

E. limt→4+ f(t) = e

F. No such function f(t) exists.

G. None of the above.

Ans. E
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7. Which of the following is not the Laplace transform of a piecewise smooth function
f(t) on R≥0?

A. 1
s(s2+1)

B. e−2s

s(s2+4)

C. log s2+4
s2

D. 2
s3−1

E. 1√
s+1

F. es

s2+1

G. None of the above.

Ans. F.

8. For i = 1, . . . , 6, let yi(t) be the steady-state solution of the ordinary differential
equation

d2 y

dt2
(t) + 0.0002

d y

dt
(t) + 36 y(t) = gi(t) ,

where

g1(t) = cos(t) g2(t) = sin2(t)
g3(t) = cos(3t) g4(t) = sin(4t)
g5(t) = cos2(3t) g6(t) = sin2(4t)

Let Ai = max
t∈R
|yi(t)|, i = 1, . . . , 6. Which one among the Ai’s is the largest?

A. A1

B. A2

C. A3

D. A4

E. A5

F. A6

G. None of the Ai’s exists.

Ans. E.
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9. Let f(x) = e−
x2

2 ∗ x be the convolution of the functions e−
x2

2 and x on R. Then f(2)
is equal to

A. 0

B. 2 e

C. 2 e−2

D. 4 e2

E. e−1

2

F. e−2

2

G. None of the above.

Ans. C.

10. Suppose that f(r, t) is a smooth function defined for all 0 ≤ r ≤ 1, t ≥ 0, such that

∂2f

∂t2
=
∂2f

∂r2
+

1

r

∂f

∂r
, f(1, t) = 0 for all t ≥ 0

and there exists two positive real numbers α, β such that J0(α) = J0(β) = 0 and

f(r, 0) = J0(αr),
∂f

∂t
(r, 0) = J0(βr) for all r ≥ 0 .

Which of the following statements is true?

A. f(0, t) is a periodic function in t with period α + β.

B. lim
t→∞

f(0, t) = 0.

C. ∂f
∂r

(0, 0) = 0.

D.
∫ 1

0
f(r, t) dr is independent of t.

E. f(0, t) is a periodic function in t with period 2π.

F.
∫ 1

0
f(r, t)2 dr is independent of t.

G. None of the above.

And. C. f(r, t) = cos(αt) J0(αt) + 1
β

sin(βt) J0(βt) (Actually, one does not need to
solve the PDE to see that C is correct.)
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11. Suppose that u(x, t) is a smooth function defined for all 0 ≤ x ≤ π, t ≥ 0, which
satisfies the differential equation

∂u

∂t
=
∂2u

∂x2

and such that

u(0, t) = ∂u
∂x

(π, t) = 0 for all t ≥ 0
u(x, 0) = 2 sin(x

2
)− sin(3x

2
) for all t ≥ 0 .

Then u(π
3
, 2) is equal to

A. e− e−1

B. e−1
√

3
+ e−4

4

C. e
3
− e−1

D.
√

3e
2

+ 3e2

E. e−1 − e−9

F. e−
1
4 + e−

1
3√
3

G. None of the above.

Ans. E. u(x, t) = 2 sin(x
2
) e−

4
4 − sin() e−

9t
4

12. Let C be the circle {|z| = 2} on the complex plane, oriented counterclockwise. Which
ones of the following three integrals are equal to 0?

(1)

∮
C

ez − e
z − 1

dz

(2)

∮
C

ez
2 − e

z2 − 1
dz

(3)

∮
C

ez
3 − e

z3 − 1
dz

A. Only (1)

B. Only (2)

C. Only (3)

D. Only (1) and (2)

E. Only (2) and (3)

F. Only (1) and (3)

G. (1), (2) and (3).

Ans. G.
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13. Find the residue of the functions

f(z) =
1

ez − 1
, g(z) =

1

ez − 1− z
at z = 0.

Ans. Resz=0f(z) = 1, Resz=0g(z) = 0.

14. Compute the improper integral ∫ ∞
0

cos(2πx)

1 + x2
dx

15. Let f(x) be the even periodic function on R with period 2π, such that

f(x) =

{
2 for 0 ≤ x ≤ π

4

0 for π
4
< x ≤ π

(a) Compute the Fourier series

∞∑
n=0

an cos(nx)

for f(x).

Ans. 1
2
− 2
√

2
π

∑∞
k=0

(−1)k cos((4k+1)x)
4k+1

2
√

2
π

∑∞
k=0

(−1)k cos((4k+3)x)
4k+3

4
π

∑∞
k=0

(−1)k cos((4k+2)x)
4k+2

(b) Find
∑∞

n=0 an and
∑∞

n=1 |an|2.

Ans. 7
4

16. Suppose that f(x) is an odd periodic real-valued function on R with period 2π, such
that the area of the region

{(x, y) ∈ R2 | 0 ≤ y ≤ f(x)2, 0 ≤ x ≤ π}

is equal to 5π. Let
∑∞

n=1 bk sin(kx) be the Fourier series for f(x). Find
∑∞

n=1 b
2
n.

17. Find the Fourier transform of the function f(x) = e−x
2
. (Hint: Apply Cauchy’s

theorem to the rectangle with vertices R,R + ia,−R + ia,−R.)

18. Consider a thin circular metal disk 2 meters in diameter, whose faces are perfectly in-
sulated. Suppose that the temperature at the boundary of the disk is kept at 10 cos(θ),
where θ is the angle formed with the horizontal line through the center of the disk.
Find the steady-state temperature distribution on the disk.
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19. Let α1 be the smallest positive zero of the Bessel function J0(x). Find a solution u(r, t)
of the wave equation

∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r

defined for 0 ≤ r ≤ 1, t ≥ 0 such that u(1, t) = 0 for all t ≥ 0, and u(r, 0) = 2 J0(α1 r),
and ∂u

∂t
(r, 0) = 5 J0(α1 r) for all 0 ≤ r ≤ 1.

20. Suppose that u(x, t) is a function defined on for 0 ≤ x ≤ π, t ≥ 0, which satisfies the
differential equation

∂u

∂t
= 25

∂2u

∂x2

and such that u(0, t) = u(π, t) = 0 for all t ≥ 0, and

u(x, 0) = cos(x) sin(x) + sin3(x) for all t ≥ 0

Find the function u(x, t).


