3 - Phase plane diagrams for linear systems

Consider the linear homogeneous system

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \tag{4}\\
c & d
\end{array}\right)\binom{x}{y} .
$$

Depending on the eigenvalues λ_{1}, λ_{2} of the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, various cases arise.
We first assume that the eigenvalues λ_{1}, λ_{2} are real and distinct. Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be corresponding eigenvectors. The general solution is thus

$$
c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

CASE 1 (stable node): $\lambda_{1}<\lambda_{2}<0$. As $t \rightarrow+\infty$, all trajectories flow into the origin. The component along \mathbf{v}_{1} decays faster, and trajectories are asymptotically tangent to \mathbf{v}_{2}.

CASE 2 (unstable node): $0<\lambda_{1}<\lambda_{2}$. As $t \rightarrow+\infty$, trajectories flow away from the origin, becoming arbitrarily large. For negative times, as $t \rightarrow-\infty$, the component along \mathbf{v}_{2} decays faster, and trajectories are asymptotically tangent to \mathbf{v}_{1}.

CASE 3 (saddle): $\lambda_{1}<0<\lambda_{2}$. The zero solution is unstable. As $t \rightarrow+\infty$ the component along \mathbf{v}_{1} approaches zero, while the component along \mathbf{v}_{2} becomes arbitrarily large. On the other hand, as $t \rightarrow-\infty$, the \mathbf{v}_{1}-component becomes large, while the \mathbf{v}_{2} component approaches zero.

Left: a stable node. Middle: an unstable node. Right: a saddle.

CASE 4 (degenerate node): Assume that the matrix A has a double eigenvalue $\lambda \in \mathbb{R}$.
If $\lambda<0$ then the origin is a stable node. If $A=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$ is diagonal, then all trajectories are half lines emanating from the origin. If A is not diagonalizable (only one linearly independent eigenvector \mathbf{v}_{1} can be found), then trajectories approach the origin tangent to \mathbf{v}_{1}.

If $\lambda>0$ then the origin is an unstable node. The orbits are the same as in the stable case, reversing the time direction.

Left: a stable degenerate node (in the case of only one linearly independent eigenvector).
Right: an unstable degenerate node (in the case of two linearly independent eigenvectors).

Next, assume that the matrix A has complex eigenvalues: $\lambda=\alpha \pm i \beta$, with $\beta \neq 0$.
CASE 5 (center): If $\alpha=0$, solutions are periodic. Trajectories are ellipses (or circumferences) centered at the origin.

CASE 6 (stable spiral point): If $\alpha<0$, trajectories are spirals converging to the origin as

$$
t \rightarrow+\infty .
$$

CASE 7 (unstable spiral point): If $\alpha>0$, trajectories are spirals moving away from the origin as time increases.

Left: a center. Middle: a stable spiral point. Right: an unstable spiral point.

