Notes on vector spaces

The concept of vector spaces and the related concepts such as linear span, linear independence basis and dimension are of fundamental importance in mathematics. At several places in Math 240 these concepts are used, for instance on p .368 of 8.3 . Here is a summary of the definitions.

An abstract vector space is a set (whose elements are called "vectors"), plus two operations, called vector addition and scalar multiplication. The set of scalars used in Math 240 is either the set \mathbb{R} of all real numbers, or the set \mathbb{C} of all complex numbers. You may be more familiar with real numbers, but in many situations you will need complex numbers. Section 7.6 of Zill and Cullen, gives a description of vector spaces over real numbers. In this note we write F for the field of scalars of a vector space over F, where F is either \mathbb{R} or \mathbb{C}.

Definition. A vector space V over F consists of the following data: a set V, a special element $\overrightarrow{0} \in V$, and two binary operations, vector addition (denoted by +) and scalar multiplication (denoted by \cdot)

$$
+: V \times V \longrightarrow V \quad \text { and } \quad \cdot: F \times V \longrightarrow V
$$

satisfying the following properties.
(i) $v+\overrightarrow{0}=\overrightarrow{0}+v=v$ for all $v \in V$.
(ii) $u+v=v+u$ for all $u, v \in V$.
(iii) $u+(v+w)=(u+v)+w$ for all $u, v, w \in V$.
(iv) $0 \cdot v=\overrightarrow{0}$ for all $v \in V$.
(v) $1 \cdot v=v$ for all $v \in V$.
(vi) $v+((-1) \cdot v)=\overrightarrow{0}$ for all $v \in V$.
(vii) $\lambda \cdot(u+v)=(\lambda \cdot u)+(\lambda \cdot v)$ for all $\lambda \in F$ and all $u, v \in V$.
(viii) $(\lambda+\mu) \cdot v=(\lambda \cdot v)+(\mu \cdot v)$ for all $\lambda, \mu \in F$ and all $v \in V$.

Definition. Let V be a vector space over F.
(1) A linear combination of elements $u_{1}, \ldots, u_{n} \in V$ is an element of V of the form

$$
\lambda_{1} \cdot u_{1}+\lambda_{2} \cdot u_{2}+\cdots+\lambda_{n} \cdot u_{n}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in F$ are scalars.
(2) A subset $S \subset V$ is said to be linearly independent if there is no non-trivial linear relation between elements of S. In other words, if u_{1}, \ldots, u_{n} are distinct elements of $S, a_{1}, \ldots, a_{n} \in F$ are n scalars and if $a_{1} \cdot u_{1}+a_{2} \cdot u_{2}+\cdots+a_{n} \cdot u_{n}=\overrightarrow{0}$, then $a_{1}=a_{2}=\cdots=a_{n}=0$.
(3) A subset $T \subset V$ spans V if every element of V is a linear combination of elements of T.

The following is the one of the most important theorems in linear algebra. The concepts of basis and dimension are based on it.

Theorem. Let V be a vector space over F.
(1) Let S be a subset of V. The following are equivalent.
(a) S is a maximal linearly independent subset of V, i.e. every subset $T \supsetneqq S$ of V is linearly dependent.
(b) S is a minimal subset of V which spans V, i.e. no subset $T \nsubseteq S$ spans V.
(c) Every element of V can be written in one and only one way as a linear combination of elements of S.

A subset S of V satisfying the above equivalent conditions is called a basis of V.
(2) Any two bases of V have the same cardinality, i.e. they have the same number of elements. This number is called the dimension of V.

Examples.

1. The set of all column vectors with n entries in \mathbb{R} form an (n-dimensional) vector space over \mathbb{R}. Similarly \mathbb{C}^{n} is an (n-dimensional) vector space over \mathbb{C}.
2. The set of all smooth (i.e. infinitely differentiable) functions on \mathbb{R} with values in \mathbb{R} (respectively in \mathbb{C}) has a natural structure as a vector space over \mathbb{R} (respectively \mathbb{C}). They are usually written as $C^{\infty}((-\infty, \infty) ; \mathbb{R})$ and $C^{\infty}((-\infty, \infty) ; \mathbb{C})$ respectively. These function spaces are infinite dimensional.
3. The set of all $m \times n$ matrices with entries in \mathbb{R} has a natural structure as an $m n$-dimensional vector space over \mathbb{R}. The set of all $m \times n$ matrices with entries in \mathbb{C} has a natural structure as an $m n$-dimensional vector space over \mathbb{C}, which can be regarded also as a $2 m n$-dimensional vector space over \mathbb{R}. (In particular \mathbb{C} has a natural structure as a 2 -dimensional vector space over \mathbb{R}.)
4. Let $A \in \mathrm{M}_{m, n}(F)$ be an $m \times n$ matrix with entries in $F, F=\mathbb{R}$ or \mathbb{C}.
(a) The set of all F-linear combinations of the columns of A form a vector subspace $\operatorname{Im}(A)$ of F^{m}. i.e. $\operatorname{Im}(A)$ is a subset of F^{n} which is stable under vector addition and scalar multiplication, hence itself has a natural structure as a vector space over F. The dimension of this subspace is called the column rank of A.
Similarly the dimension of of all F-linear combinations of the rows of A is a vector subspace of the space of all row vectors with n entries in F. Its dimension is called the row rank of A.

Fact. The row rank and the column rank of A are equal; we call it the rank of A. (Zill and Cullen 8.3 definition 8.8 used the row rank.)
(b) The subset $\operatorname{Ker}(A)$ of F^{n} consisting of all column vectors $v \in F^{n}$ such that $A \cdot v=\overrightarrow{0}$ is a vector subspace of F^{n}.

Fact. $\operatorname{dim}(\operatorname{Ker}(A))+\operatorname{rank}(A)=n$.

