
Formula for matrix exponential

In this challenge/extra-credit problem, we give a formula for the exponential exp(tA) for a square
matrix A ∈Mn(C), in the generic case when the characteristic polynomial of A has n distinct roots,
and the “generic exceptional case” when the characteristic polynomial of A has one double root and
n−2 simple roots.

This formula must have appeared in the literature, but I have not seen them before. Be sure to tell
me if you figure out how to do them.

The interest of these formulas are mostly theoretical, in that you can actually write down a closed
formula. It is unclear to me whether they offer any real computational edge for n large (say n≥ 4), for
either exact or numerical computations. Yes you can copy them to your cheat sheet and use them in
exams. I am not sure whether such formulas helps to improve your score.

1. Suppose that A ∈Mn(C) is a square matrix whose characteristic polynomial

f (x) := det(x · In−A)

has n mutually distinct roots λ1, . . . ,λn: f (x) = ∏
n
i=1(x−λi). Define

E(t,x;λ1, . . . ,λn) :=
n

∑
i=1

eλit ·
∏1≤ j≤n, j 6=i(x−λ j)

f ′(λi)
=

n

∑
i=1

eλit ·
∏1≤ j≤n, j 6=i(x−λ j)

∏1≤ j≤n, j 6=i(λi−λ j)

Note that E(t,x;λ1, . . . ,λn) can be regarded as a polynomial in x whose coefficients are functions in t,
depending on n parameters λ1, . . . ,λn; the parameters are assumed to be mutually distinct. Show that

exp(tA) = E(t,A;λ1, . . . ,λn) =
n

∑
i=1

f ′(λi)
−1 · eλit · ∏

1≤ j≤n, j 6=i
(A−λi).

Hints: (i) You might want to start with the special cases (1a) and (1b) below.
(ii) The Cayley–Hamilton theorem, which says that f (A) = ∏

n
i=1(A− λi · In) = 0, is helpful. One

consequence of the Cayley–Hamilton theorem is that each monomial An,An+1,An+2, . . . in A can be
expressed as a polynomial in A of degree at most n−1. Therefore one would expect to get a formula
for exp(tA) as a polynomial in A of degree at most n− 1 depending on the characteristic polynomial
f (x) of A, and the coefficients of this polynomial formula would involve the exponentials eλit . You
want to show that E(t,x;λ1, . . . ,λn) is the sought-after formula.
(iii) Finally notice that E(t,x;λ1, . . . ,λn) is the unique polynomial of degree at most n− 1 in x such
that E(t,λi;λ1, . . . ,λn) = eλit for i = 1, . . . ,n.

Illustrations with special cases

(1a) When n = 2, the formula says that

exp(tA) = eλ1t · (λ1−λ2)
−1 · (A−λ2)+ eλ1t · (λ1−λ2)

−1 · (A−λ2)

(1b) When n = 3, the formula says that

exp(tA) = eλ1t (A−λ2)(A−λ3)

(λ1−λ2)(λ1−λ3)
+ eλ2t (A−λ1)(A−λ3)

(λ2−λ1)(λ2−λ3)
+ eλ3t (A−λ1)(A−λ2)

(λ3−λ1)(λ3−λ2)
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2. In the formula for exp(tA) in problem 1, take the limit as λn goes to λn−1 while λ1, . . . ,λn−2 remain
fixed. to get a formula for exp(tA) when the characteristic polynomial of A has a root with multiplicity
2 and n−2 simple roots. In other words, define a polynomial E(t,x;λ1, . . . ,λn−2 | λn−1,λn−1) in x of
degree n−1 by

E(t,x;λ1, . . . ,λn−2 | λn−1,λn−1) = lim
λn→λn−1

E(t,x;λ1, . . . ,λn).

Let g(x) := ∏
n−2
i=1 (x−λi).

(2a) Show that E(t,x;λ1, . . . ,λn−2 | λn−1,λn−1) defined above as a limit is given explicitly by

E(t,x;λ1, . . . ,λn−2 | λn−1,λn−1) =
n−2

∑
i=1

eλit g(x)(x−λn−1)
2

g′(λi)(λi−λn−1)2

+ eλn−1tg(x)
[

1
g(λn−1)

+

(
t

g(λn−1)
− g′(λn−1)

g(λn−1)2

)
(x−λn−1)

]
(2b) Suppose that the characteristic polynomial for a square matrix A ∈Mn(C) has one double root

λn−1 and n−2 simple roots λ1, . . . ,λn−2. Prove that

exp(tA) = E(t,A;λ1, . . . ,λn−2 | λn−1,λn−1).

Illustration: when n = 3 we have

E(t,x;λ1 | λ2,λ2) = eλ1t (x−λ2)
2

(λ1−λ2)2 + eλ2t(x−λ1)

[(
t

λ2−λ1
− 1

(λ2−λ1)2

)
(x−λ2)

]
Remark. From an algebraic point of view, what underlies the formulas for E(t,x;λ1, . . . ,λn) and
E(t,x;λ1, . . . ,λn−2 | λn−1,λn−1) in problems 1 and 2 is the partial fraction decomposition. For instance

1
g(x)(x−λ 2

n−1)
=

n−2

∑
i=1

1
g′(λi)(x−λi)

− g′(λn−1)

g(λn−1)2(x−λn−1)
+

1
g(λn−1)(x−λn−1)2

Clearing the denominator, we get

1 =
n−2

∑
i=1

g(x)(x−λn−1)
2

g′(λi)(x−λi)
+

[
g(x) ·

(
− g′(λn−1)

g(λn−1)2 (x−λn−1)+
1

g(λn−1)

)]
The right hand side of the above equality is a sum of n− 1 polynomials, with the last one grouped
under a pair of square brackets. Let’s call them p1(x), . . . , pn−2(x), pn−1(x). The n− 1 matrices
p1(A), . . . , pn−2(A), pn−1(A) are the “projections” to the one-dimensional eigenspace for the simple
eigenvalues λ1, . . . ,λn−2 and the two-dimensional generalized eigenspace for λn−1. Clearly the sum
of these matrices p j(A) is In. The Cayley–Hamilton theorem implies that pi(A)p j(A) = 0 if i 6= j,
and p j(A)2 = p j(A)2 for all j = 1, . . . ,n− 2. The image (range) of p1(A), . . . , pn−2(A) are the one-
dimensional eigenspaces for λ1, . . . ,λn−2, and the image of pn−1 is the generalized eigenspace cor-
responding to the double root λn−1 of det(x · In−A). In the next problem we give an algorithm for
computing exp(tA) in all cases based on the knowledge of all roots of the characteristic polynomial of
exp(tA). (Of course finding all roots of det(x · In−A) is arguably the hardest part for computing either
the exponential exp(tA) or the Jordan form of A for a “randomly picked” A.)
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3. We first describe a general algorithm/procedure.

• The input is a polynomial f (x) with coefficients in C already factored in the form

f (x) =
r

∏
i=1

(x−λi)
ei = (x−λ1)

e1 · · ·(x−λr)
er ,

where λ1, . . . ,λr are mutually distinct complex numbers and e1, . . . ,er ≥ 1 are positive integers.
Let n := e1 + . . .+ er = deg( f (x))

• The output is a function E(t,x;λ1, . . . ,λr;e1, . . . ,er) in variables t and x, which depends on the
paratmeters λ1, . . . ,λr and e1, . . . ,er. It will be a polynomial in x of degree ≤ n− 1 whose
coefficents are functions which can be written as polynomials in t,λ1, . . . ,λr and eλ1t , . . . ,eλrt .

Algorithmic definition of E(t,x;λ1, . . . ,λr;e1, . . . ,er).

Step 1. Compute the partial fraction decomposition of the rational function 1
f (x) :

1
f (x)

=
r

∑
i=1

hi(x)
(x−λi)ei

,

where h1(x), . . . ,hr(x) are polynomials with deg(hi(x))≤ ei−1 for each i = 1, . . . ,r.

One way to compute the hi(x)’s is as follows. For each i let

gi(x) :=
f (x)

(x−λi)ei
,

a polynomial in x which does not vanish at λi. Then

hi(x) = ai,ei−1(x−λi)
i−1 + · · ·+ai,e1(x−λi)+ai,0 ,

where

ai,0 =
1

gi(λi)
, ai,1 =

d
dx

(
1

gi(x)

)∣∣∣∣
x=λi

, ai,2 =
1
2!

d2

dx2

(
1

gi(x)

)∣∣∣∣
x=λi

,

ai,3 =
1
3!

d3

dx3

(
1

gi(x)

)∣∣∣∣
x=λi

, . . . , ai,ei−1 =
1

ei−1!
dei−1

dxei−1

(
1

gi(x)

)∣∣∣∣
x=λi

Step 2. Define/compute polynomials p1(x), . . . , pr(x) of degree ≤ n−1, given by

pi(x) :=
f (x)

(x−λi)ei
·hi(x) = gi(x) ·hi(x).

Define/compute the functions Ei(t,x;λi,ei) for i = 1, . . . ,r given by

Ei(t,x;λi,ei) := eλit pi(x)
(

1+ t(x−λi)+
t2(x−λi)

2

2!
+ · · ·+ tei−1(x−λi)

ei−1

(ei−1)!

)
(We will think about Ei(t,x;λi,ei) as a function in two variables (t,x) depending on two parameters
λi,ei. It is a polynomial in x of degree ≤ ei− 1 whose coefficients are simple expressions involving
eλit and λi.)
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Step 3. The sum of the Ei(t,x;λi,ei)’s is the formula E(t,x;λ1, . . . ,λr;e1, . . . ,er) we want:

E(t,x;λ1, . . . ,λr;e1, . . . ,er) = E1(t,x;λ1,e1)+ · · ·+Er(t,x;λr,er)

Comments: In step 1 we gave a formula for the partial fraction decomposition of 1
f (x) . An alternative

way is to think of the coefficients of the polynomial hi(x) of degree ≤ ei−1 unknowns, so altogether
you have e1 + · · ·+ er = n unknowns. Multiplying the first equality in step 1 by f (x) and equate the
coefficients of 1,x,x2, . . . ,xn−1 on both sides, you get d linear equations in the n unknowns, which is
easily solved by elimination.

Challenge problem 3. Prove that for any square matrix A ∈Mn(C) such that

det(x · In−A) =
r

∏
i=1

(x−λi)
ei

where λ1, . . . ,λr are mutually distinct complex numbers and e1, . . . ,er are positive integers, we have

exp(tA) = E(t,A;λ1, . . . ,λr;e1, . . . ,er).
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Comments and hints.

(i) The formulas in problems 1 and 2 are both special cases of the formula in problem 3.

(ii) Let Pi = pi(A) for i = 1, . . . ,n, where pi(x) is the polynomial defined in Step 2. It is not difficulty
to see from the Cayley–Hamilton theorem that

P1 + · · ·Pr = In, P2
i = Pi for i = 1, . . . ,r, Pi ·Pj = 0 if i 6= j.

(iii) The column span of the matrix Pi is the vector subspace Vi of Cn
col consisting of all generalized

eigenvectors of A associated with the eigenvalue λi; dimC(Vi) = ei for each i. We know that
Pei

i · v =~0 for every vector v ∈Vi.
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