
How to compute the Jordan form of a matrix

§1. Notation.
(1.1) Let A ∈Mn(C) be a square matrix with entries in C. Let

f (x) := det(x · In−A)

be the characteristic polynomial. Suppose that f (x) has already been factored. (So we have swept the
most difficult part “under the rug”.) Write

f (x) =
r

∏
i=1

(x−λi)
di = (x−λ1)

d1 · · ·(x−λr)
dr ,

where λ1, . . . ,λr are mutually distinct complex numbers, and d1, . . . ,dr ∈ N≥1 are positive integers. In
other words λ1, . . . ,λr are the eigenvalues of A, and d1, . . . ,dr are their multiplicities as roots of f (x).

(1.2) Computing the Jordan form of A means that you want to find a good basis of Cn
col, grouped in

blocks
v1,1,v1,2, . . . ,v1,e1 ; . . . ,v j,1,v j,2, . . . ,v j,e j , . . . ,vs,1, . . . ,vs,es .

Here s is the number of (Jordan) blocks, and e1, . . . ,es are the sizes of the Jordan blocks. Moreover
there is one of the eigenvalues associated to each of the s blocks; we will use the notation λc(1), . . . ,λc(s)
for the eigenvalue associated with the s blocks. We have

∑
1≤ j≤s, c( j)=i

e j = di ∀i = 1, . . . ,r

In other words, the sum of the sizes of all Jordan blocks with eigenvalue λi is the multiplicity of λi

in the characteristic polynomial. The theory of Jordan canonical forms asserts the existence of a good
basis vectors as above, which satisfies the properties to be reviewed in 1.3 below.

(1.3) For each block of the good basis vectors v j,1,v j,2, . . . ,v j,e j , we have

A · v j,1 = λc( j)v j1 , A · v j,2 = λc( j)v j2 + v j,1, · · · , A · v j,e j = λc( j)v j,e j + v j,e j−1

Let C be the invertible n×n matrix whose columns are the good basis vectors

v1,1,v1,2, . . . ,v1,e1 ; . . . ,v j,1,v j,2, . . . ,v j,e j , . . . ,vs,1, . . . ,vs,es .

Then we the matrix C−1 ·A ·C takes a simple form, call the Jordan form of A. It is composed of s
diagonal Jordan blocks; the j-th Jordan block J j has size e j, with associated eigenvalue λc( j):

J j = λc( j) · Ie j +Ne j ,

where Ne j ∈ Me j(C) is the strictly upper triangular e j × e j matrix such that the the e j − 1 entries
immediately above the diagonal are 1, and all other entries are 0.

The collection of pairs {
(e1,λc(1)), . . . ,(es,λc(s))

}
,

which specifies the Jordan form of A, is determined by A up to permutation of the s pairs.
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(1.4) Computing the Jordan form of A means finding a good basis vector

v1,1,v1,2, . . . ,v1,e1 ; . . . ,v j,1,v j,2, . . . ,v j,e j , . . . ,vs,1, . . . ,vs,es

grouped in blocks, satisfying the properties in 1.3. Textbooks in linear algebra tends to end with the
proof of the existence of Jordan canonical form (and rational canonical forms). Systematic ways to to
actually compute a good basis tend not to make it to the actual text. However it is not too difficult to
produce an algorithm. We present one in this note.

(1.5) REMARK Let’s note that it is quite straight-forward to compute the generalized eigenspaces of
A, from which one can easily compute the matrix exponential exp(tA) without finding a good basis
which turns A into a Jordan form.

Recall that for each eigenvalue λi, the linear span of all blocks of the good basis with eigenvalue
λi is the generalized eigenspace for the eigenvalue λi; we will write it as V (λi). We have

dim(V (λi)) = ∑
1≤ j≤s, c( j)=i

e j = di.

The generalized eigenspace V (λi) can be computed easily:

V (λi) = Ker((A−λi)
di).

§2. How to compute the invariants
(2.1) The problem of computing a good basis of C for A can be dealt with one eigenvalue at a time.
Let’s fix one of the eigenvalues λi0 , and abbreviate it to λ . Changing the natation slightly, our goal is
to find a good basis

w1,1, . . . ,w1,e1 ; . . . ;wt,et

of the generalized eigenspace V (λ ) for the eigenvalue λ . (They are members of the good basis vectors
of Cn associated to the eigenvalue λ .) Let d = d(λ ) = e1 + · · ·+et = multiplicity of λ as a root of the
characteristic polynomial f (x). We may and do assume that e1 ≤ e2 · · · ≤ et .

(2.2) The positive integers e1, . . . ,et are the sizes of Jordan blocks associated to the eigenvalue λ .
Their sum is the multiplicity of λ . They can be easily determined from

kh := dim
(

Ker(A−λ · In)
h
)
, h = 1, . . . ,d.

The numbers k j’s satisfy
1≤ k1 ≤ k2 ≤ ·· · ≤ kd−1 ≤ kd = d.

They are related to the yet-to-be-computed numbers t and e1, . . . ,et by

kh =
t

∑
j=1

Min(h,e j).

Define natural numbers e1, . . . ,ed by

`1 := k1, `2 = k2− k1, `3 = k3− k2, · · · , `d = kd− kd−1.

For each h = 1, . . . ,d,

`h = number of Jordan blocks for λ of size ≥ h,
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so we have
k1 = `1 ≥ `2 ≥ ·· · ≥ `d .

Define natural number m1, . . . ,md by

m1 := `1− `2, m2 := `2− `3, . . . , md−1 = `d−1− `d , md := `d .

Then for each h = 1, . . . ,d, we have

mh = number of Jordan blocks for λ of size h.

In other words, if we start with the sequence m1,m2, . . . ,md , replace the entry mh by the sequence
h, . . . ,h of length mh if mh ≥ 1, and eliminate all entries of 0, we get the sizes e1, . . . ,et of Jordan
blocks associated to the eigenvalue λ .

§3. How to compute a good basis
(3.1) We will use the notation in 2.1 and fix an eigenvalue λ , with multiplicity d in the characteristic
polynomial f (x) of A. In 2.2 we have defined a sequence of natural numbers m1, . . . ,md , which are
easily computed from the dimensions of Ker((A−λ )h).
Let

q(x) :=
f (x)

(x−λ )d ,

a polynomial of degree n−d. The image q(A)(Cn) is the generalized eigenenspace V (λ ), i.e.

q(A)(Cn) = Ker((A−λ · In)
d) =: V (λ ).

Define several vector subspaces of V (λ ).

1. U := (A−λ · In)(q(A)(Cn)) = (A−λ · In)(V (λ )).

2. Vh := Ker((A−λ )h) for h = 1, . . . ,d.

3. Wh :=U +Vh for h = 1, . . . ,d

Clearly
W0 :=U ⊆W1 ⊆ ·· · ⊆Wd .

The existence of Jordan canonical forms tells us that the total number t of Jordan blocks associated to
the eigenvalue λ is

t = d−dim(U)

and
wh > 0 if and only if Wh %Wh−1

for all h = 1, . . . ,h.
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(3.2) The algorithm
Step 1. Compute the sequence of subspaces

W0 ⊆W1 ⊆ ·· · ⊆Wd

of V (λ ). More precisely, compute a C-basis

u1, . . . ,ud−t ,w1,w2, . . . ,wt

adapted to the increasing sequence of subspaces

W0 ⊆W1 ⊆ ·· · ⊆Wd

in the following sense

(i) For each h with 0≤ h≤ d, there exists a unique natural number a with 0≤ a≤ t such that

Wh = Cu1 + · · ·+Cud−t +Cw1 + · · ·+Cwa.

(ii) If Wh−1 $Wh, write

Wh = Cu1 + · · ·+Cud−t +Cw1 + · · ·+Cwa, Wh−1 = Cu1 + · · ·+Cud−t +Cw1 + · · ·Cwb

with b < a, then
wb+1, . . . , . . .wa ∈Vh.

Step 2. For each j = 1, . . . , t, let
e j := Min{k | w j ∈Vk}.

(These numbers e1, . . . ,et are easily read off from the computation in step 1.) Define

v j,1 := (A−λ · In)
e j−1w j, v j,2 := (A−λ · In)

e j−1w j, . . . , v j,e j−1 := (A−λ · In)w j, v j,e j := w j

for j = 1, . . . , t. Thus we get a block of good basis vectors for V (λ ) for each j = 1, . . . , t. Putting the t
blocks together we obtain a good basis for the generalized eigenspace V (λ ).

(3.3) REMARK The algorithm above uses only Gaussian eliminations. The actual computation takes
places in step 1.
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