Math 240 Assignment 12, Spring 2018

Due in class on Monday, April 23

Part 1.
1A. Give an example of a \mathbb{C}-vector space V, not necessarily finite dimensional, and a linear operator $T: V \rightarrow V$ such that $\operatorname{Ker}(T) \neq(0)$ and the range/image of T is equal to V. If such an example does not exist, explain the reason.

1B. Let P_{3} be the vector space over the field \mathbb{R} of all real numbers consisting of all polynomials $f(x)$ in x of degree at most 3 . Let $T: P_{3} \rightarrow P_{3}$ be the linear transformation which sends every element $f(x) \in P_{3}$ to $x^{2} \frac{d^{2} f}{d x^{2}}+\frac{d f}{d x}$. Find a basis of the kernel of T AND a basis of the range of T.

1 C . The set \mathbb{C} of all complex numbers can be regarded as a vector space over \mathbb{R}, where vector addition is the addition of complex numbers and scalar multiplication is multiplication of a complex number by a real number.
(i) Prove that 1 and $\sqrt{-1}$ is an \mathbb{R}-basis of \mathbb{C}.
(ii) Let $w=a+b \sqrt{-1}$ be a complex number, where $a, b \in \mathbb{R}$. Show that the T_{w} which sends z to $w \cdot z$ for every $z \in \mathbb{C}$ is an \mathbb{R}-linear transformation from \mathbb{C} to \mathbb{C}.
(iii) Determine the matrix representation of the operator T_{w} on \mathbb{C} with respect to the \mathbb{R}-basis $1, \sqrt{-1}$.

1D. Let $P(u)=u^{n}+a_{n-1} u^{n-1}+\cdots+a_{1} u+a_{0}$, where a_{0}, \ldots, a_{n-1} be real numbers. Consider the map

$$
P\left(\frac{d}{d x}\right): \mathbb{R}[x] \rightarrow \mathbb{R}[x], \quad f(x) \mapsto P\left(\frac{d}{d x}\right)(f(x)) \quad \forall f(x) \in \mathbb{R}[x]
$$

(i) Show that the above map is a linear map T from $\mathbb{R}[x]$ to $\mathbb{R}[x]$.
(ii) Show that the kernel of T is non-trivial (i.e. not equal to $\{0\}$) if and only if $P(u)$ is divisible by u.
(iii) Either show that every element of $\mathbb{R}[x]$ is in the image of T, or give an example of a polynomial $P(u)$ such that the image of the corresponding linear operator T is not equal to $\mathbb{R}[x]$.

Part 2.(extra credit)
2 A. Let $A \in \mathrm{M}_{n}(\mathbb{C})$ be a square matrix with complex coefficients. Let $\vec{x}_{1}(t), \ldots, \vec{x}_{n}(t)$ be n linearly independent solutions of the equation

$$
\frac{d}{d t} \vec{x}(t)-A \cdot \vec{x}(t)=0
$$

(i) Let $W(t):=\operatorname{det}\left(\vec{x}_{1}(t), \ldots, \vec{x}_{n}(t)\right)$ be the determinant of the square matrix whose n columns are $\vec{x}_{1}(t), \ldots, \vec{x}_{n}(t)$. Find a first order differential equation satisfied by $W(t)$.
(ii) Find an explicit formula for $W(t)$ up to an constant, by solving the differential equation you found in (i).

2B. Give a proof that the \mathbb{R}-vector space $\mathbb{R}[x]$ of all polynomials in one variable x with coefficients in \mathbb{R} is not a finite dimensional vector space.

