MATH 240 ASSIGNMENT 12, SPRING 2018

Due in class on Monday, April 23

Part 1.

1A. Give an example of a \mathbb{C} -vector space *V*, not necessarily finite dimensional, and a linear operator $T: V \to V$ such that $\text{Ker}(T) \neq (0)$ and the range/image of *T* is equal to *V*. If such an example does not exist, explain the reason.

1B. Let P_3 be the vector space over the field \mathbb{R} of all real numbers consisting of all polynomials f(x) in x of degree at most 3. Let $T : P_3 \to P_3$ be the linear transformation which sends every element $f(x) \in P_3$ to $x^2 \frac{d^2 f}{dx^2} + \frac{df}{dx}$. Find a basis of the kernel of T AND a basis of the range of T.

1C. The set \mathbb{C} of all complex numbers can be regarded as a vector space over \mathbb{R} , where vector addition is the addition of complex numbers and scalar multiplication is multiplication of a complex number by a real number.

- (i) Prove that 1 and $\sqrt{-1}$ is an \mathbb{R} -basis of \mathbb{C} .
- (ii) Let $w = a + b\sqrt{-1}$ be a complex number, where $a, b \in \mathbb{R}$. Show that the T_w which sends z to $w \cdot z$ for every $z \in \mathbb{C}$ is an \mathbb{R} -linear transformation from \mathbb{C} to \mathbb{C} .
- (iii) Determine the matrix representation of the operator T_w on \mathbb{C} with respect to the \mathbb{R} -basis 1, $\sqrt{-1}$.

1D. Let $P(u) = u^n + a_{n-1}u^{n-1} + \dots + a_1u + a_0$, where a_0, \dots, a_{n-1} be real numbers. Consider the map

$$P(\frac{d}{dx}): \mathbb{R}[x] \to \mathbb{R}[x], \quad f(x) \mapsto P(\frac{d}{dx})(f(x)) \quad \forall f(x) \in \mathbb{R}[x].$$

- (i) Show that the above map is a linear map *T* from $\mathbb{R}[x]$ to $\mathbb{R}[x]$.
- (ii) Show that the kernel of *T* is non-trivial (i.e. not equal to $\{0\}$) if and only if P(u) is divisible by *u*.
- (iii) Either show that every element of $\mathbb{R}[x]$ is in the image of *T*, or give an example of a polynomial P(u) such that the image of the corresponding linear operator *T* is not equal to $\mathbb{R}[x]$.

Part 2.(extra credit)

2A. Let $A \in M_n(\mathbb{C})$ be a square matrix with complex coefficients. Let $\vec{x}_1(t), \dots, \vec{x}_n(t)$ be *n* linearly independent solutions of the equation

$$\frac{d}{dt}\vec{x}(t) - A \cdot \vec{x}(t) = 0.$$

- (i) Let $W(t) := \det(\vec{x}_1(t), \dots, \vec{x}_n(t))$ be the determinant of the square matrix whose *n* columns are $\vec{x}_1(t), \dots, \vec{x}_n(t)$. Find a first order differential equation satisfied by W(t).
- (ii) Find an explicit formula for W(t) up to an constant, by solving the differential equation you found in (i).

2B. Give a *proof* that the \mathbb{R} -vector space $\mathbb{R}[x]$ of all polynomials in one variable *x* with coefficients in \mathbb{R} is *not* a finite dimensional vector space.