## Math 240 Practice Problems Set 2, March 2015

1. (a) Give an example of a finite dimensional $\mathbb{C}$-vector space $V$ and a linear operator $T: V \rightarrow V$ such that $\operatorname{Ker}(T) \neq(0)$ and the range/image of $T$ is equal to $V$. If such an example does not exist, explain the reason.
(b) Give an example of a $\mathbb{C}$-vector space $V$, not necessarily finite dimensional, and a linear operator $T: V \rightarrow V$ such that $\operatorname{Ker}(T) \neq(0)$ and the range/image of $T$ is equal to $V$. If such an example does not exist, explain the reason.
2. (a) Find the $2 \times 2$ matrix $A$ such that $\vec{x} \mapsto A \cdot \vec{x}$ for $\vec{x} \in \mathbb{R}^{2}$ is the counter-clockwise rotation about the origin by $45^{\circ}$.
(b) Does there exist an invertible $2 \times 2$ matrix $C$ with real entries such that $C^{-1} \cdot A \cdot C$ is a diagonal matrix? Find such a matrix $C$ if there is one, or explain why such a matrix $C$ does not exist.
(c) Does there exist an invertible $2 \times 2$ matrix $C$ with complex entries such that $D^{-1} \cdot A \cdot D$ is a diagonal matrix? Find such a matrix $D$ if there is one, or explain why such a matrix $D$ does not exist.
3. Let $A=\left(\begin{array}{ccc}1 & 0 & 4 \\ 0 & 5 & 0 \\ -4 & 0 & 9\end{array}\right)$. Compute $e^{t A}$ explicitly.
4. Let $A=\left(\begin{array}{ccccc}-2 & 0 & 4 & 0 & 1 \\ 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. Determine whether $e^{t A}$ is bounded as $t \rightarrow \infty$, i.e.
whether there exist positive integers $M, N>0$ such that all entries of $\exp (t A)$ are $\leq M$ for all $t \geq N$.
5. Find the general solution of the differential equation

$$
\frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+y=e^{-x}+\cos x-1
$$

7. Find the general solution of the differential equation

$$
\left(\frac{d^{2}}{d x^{2}}+2 \frac{d}{d x}+5\right)^{2} y=e^{(-1+2 \sqrt{-1}) x}
$$

9. Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=\frac{e^{x}}{x}
$$

on the half-line $x>0$.
10. Determine all solutions of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=e^{-3 x}
$$

such that $\lim _{x \rightarrow \infty} y(x)=0$, or explain why no such solution exists.
11. Is there a solution $y(x)$ of the differential equation

$$
\left(\frac{d^{2}}{d x^{2}}+4\right)^{2} y=\sin (2 x)
$$

such that $y(x)$ is bounded on $\mathbb{R}$ (in the sense that there exists a constant $C>0$ such that $|y(x)| \leq C$ for all $x \in \mathbb{R})$ ? Find all bounded solutions if they exist, and explain why every solution is unbounded.
12. True or False: If $A$ is a $5 \times 5$ matrix such that the real part of each of its complex eigenvalues are $\leq 0$, then all entries of $\exp (t A)$ are bounded as $t \rightarrow \infty$.
13. True or False: If $A$ is a $5 \times 5$ matrix such that $(x-1)^{2}$ divides the characteristic polynomial $\operatorname{det}\left(x \cdot \mathrm{I}_{5}-A\right)$ of $A$ and $\operatorname{dim}\left(\operatorname{Ker}\left(\mathrm{I}_{5}-A\right)\right)=1$, then $e^{-t} \cdot \exp (t A)$ is unbounded as $t \rightarrow \infty$.
14. True or False: Suppose that $P(u)$ is a polynomial in $u$ and the real part of all complex roots of $P(u)$ are less than or equal to 0 . Then every solution $y(t)$ of the differential equation $P\left(\frac{d}{d t}\right) y=0$ is bounded as $t \rightarrow \infty$.

