Math 240 Practice Problems, February 2015

1. Find all solutions of the system of equations

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
2 & 1 & 3 & 2 \\
1 & 0 & 0 & 1 \\
2 & 1 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
5 \\
8 \\
3 \\
6
\end{array}\right]
$$

such that $x_{3} \cdot x_{4}=0$.
2. Six of the following 7 elements of \mathbb{R}^{3},

$$
(1,1,-4),(3,5,-26),(2,1,1),(5,6,-27),(4,1,5),(5,-2,29),(6,2,4)
$$

lie on a 2-dimensional subspace (i.e. a plane passing through the origin). Which one does not lie on the plane that contains the other six points?
3. Six of the following 7 elements of \mathbb{R}^{3},

$$
(1,1,-4),(3,5,-26),(2,1,1),(5,6,-27),(4,1,5),(5,-2,29),(6,2,4)
$$

lie on a 2-dimensional subspace (i.e. a plane passing through the origin). Which one does not lie on the plane that contains the other six points?

Ans. Except the point $(2,1,1)$, the other six points all lie on the plane $3 x-7 y-z=0$.
4. Let B be the square matrix

$$
\left[\begin{array}{ccc}
2 & 0 & 1 \\
-2 & 3 & 4 \\
-5 & 5 & 6
\end{array}\right]
$$

Then the trace of B^{-1} is equal to
A. 21
B. 13
C. -15
D. 0
E. -14
F. None of the above.
5. Consider the following system of linear equations in 6 variables

$$
\left[\begin{array}{cccccc}
0 & 0 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 \\
1 & -1 & 0 & 0 & 0 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(a) What is the rank of the above 3×6 matrix?
(b) Write down the general solution of the above system of equations, in the form of generic linear combination of a number of linearly independent solutions.
6. Let A be the 3×5 matrix $A=\left(\begin{array}{ccccc}3 & 2 & 1 & -1 & -2 \\ 1 & 1 & 2 & 1 & 3 \\ 3 & 1 & -4 & -5 & -13\end{array}\right)$.
(a) Determine the dimension of the linear span of the columns of A.
(b) For which values of the parameter c will the system of equations

$$
A \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
5 \\
7 \\
c
\end{array}\right)
$$

admit at least a solution?
7. Provide an example in each of the following questions.
(a) Two square matrices A, B of the same size such that $A \cdot B \neq B \cdot A$.
(b) A non-zero square matrix C such that $C^{2}=0$
(c) Exhibit three different bases of \mathbb{R}^{3}.
(d) A non-linear map from the real vector space of all real-valued continuous functions on \mathbb{R} to itself.
(e) Two 3×3 matrices A, B such that $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.
8. Which ones of the following limits exit? Explain your reasons for each of the limits.
(a) $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)^{n}$
(b) $\lim _{n \rightarrow \infty}\left(\begin{array}{ll}-2 & 1 \\ -1 & 0\end{array}\right)^{n}$
(c) $\lim _{n \rightarrow \infty}\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right)^{n}$
(d) $\lim _{n \rightarrow \infty}\left(\begin{array}{cc}3 & 5 \\ 5 & -3\end{array}\right)^{n}$
(e) $\lim _{n \rightarrow \infty}\left(\begin{array}{ll}1 & -2 \\ 2 & -2\end{array}\right)^{n}$
9. (a) Find a formula for $\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)^{n}$ valid for every positive integer n.
(b) Compute $\exp \left(t \cdot\left(\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right)\right)$.
10. Let A be the 4×4 matrix

$$
A=\frac{1}{2} \cdot\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Find a basis of \mathbb{R}^{4} consisting of eigenvectors of A.
11. Let B be the 4×4 matrix

$$
B=\frac{1}{2} \cdot\left(\begin{array}{llll}
0 & 2 & 0 & 2 \\
2 & 0 & 2 & 0 \\
0 & 2 & 0 & 2 \\
2 & 0 & 2 & 0
\end{array}\right)
$$

Does there exist an invertible 4×4 matrix C such that $C^{-1} \cdot B \cdot C$ is diagonal? Find such a matrix C if there is one, or explain why such a matrix C does not exist.
12. (10 pts) Compute the determinant of the matrix

$$
\left[\begin{array}{cccc}
0 & 2 & 2 & 0 \\
1 & 0 & 3 & 0 \\
0 & 5 & 0 & 5 \\
7 & 15 & 8 & 8
\end{array}\right]
$$

Answer: \qquad
13. (10 pts) Let B be the square matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

Then B^{-1} is equal to: \qquad
14. (10 pts) Let B be an (ordered) basis of \mathbb{R}^{2}, consisting of two vectors v_{1}, v_{2}. The ordered basis C of \mathbb{R}^{2} consists of the same vectors in reverse order: v_{2}, v_{1}.
(a) Determine the change of basis matrix $P_{C \leftarrow B}$.

Answer: \qquad
(b) Suppose that the matrix representation of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ relative to basis B is given as $[T]_{B}^{B}=$

$$
[T]_{B}^{B}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Find the matrix representation $[T]_{C}^{C}$ of T relative to the basis C, where C is the ordered basis as in (a) above.

Answer: \qquad
15. (10 pts) Let Q_{2} be the vector space over \mathbb{R} consisting of all polynomials $f(x, y)$ in two variables x, y whose (total) degree is at most 2 .
(a) Find a basis of Q_{2}. (Hint: what are the monials in Q_{2} ?)
(b) Determine the dimension of Q_{2}.
(c) Let T be the linear operator from Q_{2} to itself which sends every element $f(x, y) \in Q_{2}$ to $\frac{\partial f}{\partial x}+y \cdot \frac{\partial f}{\partial y}$. Find the matrix representation of T with respect to the basis you found in (a).
(d) Find a basis of the kernel of T.
(e) Find a basis of the range of T.
(Hint for (d), (e): use the matrix representation you found in (c).)
16. (10 pts) Let A be the following 4×5 matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2 & 6
\end{array}\right]
$$

(a) Find a \mathbb{C}-basis of $N(A)$, the null space of A.
(b) Find a \mathbb{C}-basis of the row span of A.
(c) Find a \mathbb{C}-basis of the column span of A.
17. Determine whether the following matrices are diagonalizable over the field \mathbb{C} of complex numbers (i.e. \mathbb{C}^{n} has a basis consisting of eigenvectors)?
(a) $\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$
(b) $\left(\begin{array}{cc}3 & 1 \\ 0 & -3\end{array}\right)$
(c) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
18. (10 pts) Let A be the 5×5 matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & 3 \\
0 & 3 & 7 & -1 & 9 \\
0 & 0 & 2 & -7 & 6 \\
0 & 0 & 0 & -1 & 4 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

Let B be the matrix obtained from A by performing the following row operations, in order: $P_{23}, M_{5}\left(\frac{1}{2}\right), A_{24}(7), P_{14}, A_{13}(-6), M_{1}(5), A_{43}(5)$. What is the determinant of B ?

