Least Squares and Markov Processes

Christopher Croke
University of Pennsylvania

Math 115

Least Squares (linear regression)

Find the "best" line fitting a collection of data points (in the plane).

Least Squares (linear regression)

Find the "best" line fitting a collection of data points (in the plane).

The Error E in using the line will be $E=E_{1}{ }^{2}+E_{2}{ }^{2}+\ldots E_{n}{ }^{2}$ where E_{i} is the vertical distance from the i th point $\left(x_{i}, y_{i}\right)$ to the line.

Least Squares (linear regression)

Find the "best" line fitting a collection of data points (in the plane).

The Error E in using the line will be $E=E_{1}^{2}+E_{2}^{2}+\ldots E_{n}^{2}$ where E_{i} is the vertical distance from the i th point $\left(x_{i}, y_{i}\right)$ to the line. Usually there are lots of data points and you use Maple to solve.

Least Squares (linear regression)

Problem: Find the line $y=A x+B$ that minimizes the least squared error for the points $(0,2),(1,4)$, and $(2,5)$.

Least Squares (linear regression)

Problem: Find the line $y=A x+B$ that minimizes the least squared error for the points $(0,2),(1,4)$, and $(2,5)$.

$$
E(A, B)=(A 0+B-2)^{2}+(A+B-4)^{2}+(A 2+B-5)^{2}
$$

Least Squares (linear regression)

Problem: Find the line $y=A x+B$ that minimizes the least squared error for the points $(0,2),(1,4)$, and $(2,5)$.

$$
E(A, B)=(A 0+B-2)^{2}+(A+B-4)^{2}+(A 2+B-5)^{2}
$$

This is a function of two variables that we want to minimize.

Least Squares (linear regression)

Problem: Find the line $y=A x+B$ that minimizes the least squared error for the points $(0,2),(1,4)$, and $(2,5)$.

$$
E(A, B)=(A 0+B-2)^{2}+(A+B-4)^{2}+(A 2+B-5)^{2}
$$

This is a function of two variables that we want to minimize. Do it.

Least Squares (linear regression)

Problem: Find the line $y=A x+B$ that minimizes the least squared error for the points $(0,2),(1,4)$, and $(2,5)$.

$$
E(A, B)=(A 0+B-2)^{2}+(A+B-4)^{2}+(A 2+B-5)^{2}
$$

This is a function of two variables that we want to minimize. Do it. Find that the best fit is the line $y=\frac{3}{2} x+\frac{13}{6}$.

Least Squares (linear regression)

Problem: Find the line $y=A x+B$ that minimizes the least squared error for the points $(0,2),(1,4)$, and $(2,5)$.

$$
E(A, B)=(A 0+B-2)^{2}+(A+B-4)^{2}+(A 2+B-5)^{2}
$$

This is a function of two variables that we want to minimize. Do it. Find that the best fit is the line $y=\frac{3}{2} x+\frac{13}{6}$.
The answer when there are many points $\left(x_{i}, y_{i}\right)$ for $i=1,2, \ldots N$ is $Y=A x+B$ where:

$$
A=\frac{N\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{N\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}, \quad B=\frac{\left(\sum y\right)-A\left(\sum x\right)}{N}
$$

Least Squares (linear regression)

Problem: Find the line $y=A x+B$ that minimizes the least squared error for the points $(0,2),(1,4)$, and $(2,5)$.

$$
E(A, B)=(A 0+B-2)^{2}+(A+B-4)^{2}+(A 2+B-5)^{2}
$$

This is a function of two variables that we want to minimize. Do it. Find that the best fit is the line $y=\frac{3}{2} x+\frac{13}{6}$.
The answer when there are many points $\left(x_{i}, y_{i}\right)$ for $i=1,2, \ldots N$ is $Y=A x+B$ where:

$$
A=\frac{N\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{N\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}, \quad B=\frac{\left(\sum y\right)-A\left(\sum x\right)}{N}
$$

The notation above is that all sums are as i goes from 1 to N and all variables in the sum should have subscript i. For example $\sum x y$ means $\sum_{i=1}^{N} x_{i} y_{i}$.

Least Squares (linear regression)

Problem: Find the line $y=A x+B$ that minimizes the least squared error for the points $(0,2),(1,4)$, and $(2,5)$.

$$
E(A, B)=(A 0+B-2)^{2}+(A+B-4)^{2}+(A 2+B-5)^{2}
$$

This is a function of two variables that we want to minimize. Do it. Find that the best fit is the line $y=\frac{3}{2} x+\frac{13}{6}$.
The answer when there are many points $\left(x_{i}, y_{i}\right)$ for $i=1,2, \ldots N$ is $Y=A x+B$ where:

$$
A=\frac{N\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{N\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}, \quad B=\frac{\left(\sum y\right)-A\left(\sum x\right)}{N}
$$

The notation above is that all sums are as i goes from 1 to N and all variables in the sum should have subscript i. For example $\sum x y$ means $\sum_{i=1}^{N} x_{i} y_{i}$.
Use this to do our example.

Least Squares (linear regression)

Problem: A food truck introduces cheese-steaks to its menu. The owner tries different prices to see what the market is like. The following chart represents five weeks of sales:

Week	Price	Total sales
1	$\$ 3.50$	113
2	$\$ 3.75$	91
3	$\$ 4.00$	72
4	$\$ 3.25$	125
5	$\$ 3.00$	143

Least Squares (linear regression)

Problem: A food truck introduces cheese-steaks to its menu. The owner tries different prices to see what the market is like. The following chart represents five weeks of sales:

Week	Price	Total sales
1	$\$ 3.50$	113
2	$\$ 3.75$	91
3	$\$ 4.00$	72
4	$\$ 3.25$	125
5	$\$ 3.00$	143

Use the method of least squares to find the straight line that best fits the data.

Least Squares (linear regression)

Problem: A food truck introduces cheese-steaks to its menu. The owner tries different prices to see what the market is like. The following chart represents five weeks of sales:

Week	Price	Total sales
1	$\$ 3.50$	113
2	$\$ 3.75$	91
3	$\$ 4.00$	72
4	$\$ 3.25$	125
5	$\$ 3.00$	143

Use the method of least squares to find the straight line that best fits the data. Use this line to estimate the weekly sales at $\$ 3.60$.

Least Squares (linear regression)

Problem: A food truck introduces cheese-steaks to its menu. The owner tries different prices to see what the market is like. The following chart represents five weeks of sales:

Week	Price	Total sales
1	$\$ 3.50$	113
2	$\$ 3.75$	91
3	$\$ 4.00$	72
4	$\$ 3.25$	125
5	$\$ 3.00$	143

Use the method of least squares to find the straight line that best fits the data. Use this line to estimate the weekly sales at $\$ 3.60$. Our data points are (price, sales).

Least Squares (linear regression)

Problem: A food truck introduces cheese-steaks to its menu. The owner tries different prices to see what the market is like. The following chart represents five weeks of sales:

Week	Price	Total sales
1	$\$ 3.50$	113
2	$\$ 3.75$	91
3	$\$ 4.00$	72
4	$\$ 3.25$	125
5	$\$ 3.00$	143

Use the method of least squares to find the straight line that best fits the data. Use this line to estimate the weekly sales at $\$ 3.60$.
Our data points are (price, sales).
Set up a chart:

Least Squares (linear regression)

x	y	$x y$	x^{2}
3.50	113	395.5	12.25
3.75	91	341.25	14.0625
4.00	72	288	16
3.25	125	406.25	10.5625
3.00	143	429	9

Least Squares (linear regression)

x	y	$x y$	x^{2}	
3.50	113	395.5	12.25	
3.75	91	341.25	14.0625	
4.00	72	288	16	
3.25	125	406.25	10.5625	Summing the columns we find:
3.00	143	429	9	
$\sum x=17.5, \quad \sum y=544, \quad \sum x y=1860, \quad \sum x^{2}=61.875$.				

Least Squares (linear regression)

x	y	$x y$	x^{2}	
3.50	113	395.5	12.25	
3.75	91	341.25	14.0625	
4.00	72	288	16	
3.25	125	406.25	10.5625	Summing the columns we find:
3.00	143	429	9	
$\sum x=17.5, \quad \sum y=544, \quad \sum x y=1860, \quad \sum x^{2}=61.875$.				

So

$$
A=\frac{5(1860)-(17.5)(544)}{5(61.875)-(17.5)^{2}}=-70.4, \quad B=\frac{544+(70.4)(17.5)}{5}=355.2
$$

Least Squares (linear regression)

x	y	$x y$	x^{2}	
3.50	113	395.5	12.25	
3.75	91	341.25	14.0625	
4.00	72	288	16	
3.25	125	406.25	10.5625	
3.00	143	429	9	
$\sum x=17.5, \quad \sum y=544, \quad \sum x y=1860, \quad \sum x^{2}=61.875$.				

So

$$
A=\frac{5(1860)-(17.5)(544)}{5(61.875)-(17.5)^{2}}=-70.4, \quad B=\frac{544+(70.4)(17.5)}{5}=355.2
$$

and our best approximating line is:

$$
y=-70.4 x+355.2
$$

Least Squares (linear regression)

x	y	$x y$	x^{2}	
3.50	113	395.5	12.25	
3.75	91	341.25	14.0625	
4.00	72	288	16	
3.25	125	406.25	10.5625	
3.00	143	429	9	Summing the columns we find:
$\sum x=17.5, \quad \sum y=544, \quad \sum x y=1860, \quad \sum x^{2}=61.875$.				

So

$$
A=\frac{5(1860)-(17.5)(544)}{5(61.875)-(17.5)^{2}}=-70.4, \quad B=\frac{544+(70.4)(17.5)}{5}=355.2
$$

and our best approximating line is:

$$
y=-70.4 x+355.2
$$

So our estimate for sales at $\$ 3.60$ is $-70.4(3.60)+355.2=101.76$.

Markov Processes

Markov Processes are repeated many times where the outcome at a given time depends only on the outcome from the previous time.

Markov Processes

Markov Processes are repeated many times where the outcome at a given time depends only on the outcome from the previous time.

Example: The stock of Joe's Water Company changes (in the short run) only as a result of the previous day's trading. The price is observed every day and is recorded as "increased", "decreased" or unchanged". This sequence of observations forms a Markov process with 3 states.

Markov Processes

Markov Processes are repeated many times where the outcome at a given time depends only on the outcome from the previous time.

Example: The stock of Joe's Water Company changes (in the short run) only as a result of the previous day's trading. The price is observed every day and is recorded as "increased", "decreased" or unchanged". This sequence of observations forms a Markov process with 3 states. Suppose if the stock increases one day that the probability that it increases the next day is .2 , remains unchanged is .2 , and decreases is .6 .

Markov Processes

Markov Processes are repeated many times where the outcome at a given time depends only on the outcome from the previous time.

Example: The stock of Joe's Water Company changes (in the short run) only as a result of the previous day's trading. The price is observed every day and is recorded as "increased", "decreased" or unchanged". This sequence of observations forms a Markov process with 3 states. Suppose if the stock increases one day that the probability that it increases the next day is .2 , remains unchanged is .2 , and decreases is . 6 . If the stock remains unchanged one day then the probability that it increases on the next day is .3 , remains unchanged is .6 , and decreases is .1 .

Markov Processes

Markov Processes are repeated many times where the outcome at a given time depends only on the outcome from the previous time.

Example: The stock of Joe's Water Company changes (in the short run) only as a result of the previous day's trading. The price is observed every day and is recorded as "increased", "decreased" or unchanged". This sequence of observations forms a Markov process with 3 states. Suppose if the stock increases one day that the probability that it increases the next day is .2 , remains unchanged is .2 , and decreases is .6 . If the stock remains unchanged one day then the probability that it increases on the next day is .3 , remains unchanged is .6 , and decreases is .1. If the stock decreases one day then the probability that it increases on the next day is .5 , remains unchanged is .3 , and decreases is .2 .

Markov Processes

Markov Processes are repeated many times where the outcome at a given time depends only on the outcome from the previous time.

Example: The stock of Joe's Water Company changes (in the short run) only as a result of the previous day's trading. The price is observed every day and is recorded as "increased", "decreased" or unchanged". This sequence of observations forms a Markov process with 3 states. Suppose if the stock increases one day that the probability that it increases the next day is .2 , remains unchanged is .2 , and decreases is .6. If the stock remains unchanged one day then the probability that it increases on the next day is .3 , remains unchanged is .6 , and decreases is .1. If the stock decreases one day then the probability that it increases on the next day is .5 , remains unchanged is .3 , and decreases is .2 . Represent the possible transitions between states by a tree diagram

Markov Processes

Markov Processes are repeated many times where the outcome at a given time depends only on the outcome from the previous time.

Example: The stock of Joe's Water Company changes (in the short run) only as a result of the previous day's trading. The price is observed every day and is recorded as "increased", "decreased" or unchanged". This sequence of observations forms a Markov process with 3 states. Suppose if the stock increases one day that the probability that it increases the next day is .2 , remains unchanged is .2 , and decreases is .6. If the stock remains unchanged one day then the probability that it increases on the next day is .3 , remains unchanged is .6 , and decreases is .1. If the stock decreases one day then the probability that it increases on the next day is .5 , remains unchanged is .3 , and decreases is .2 . Represent the possible transitions between states by a tree diagram And a matrix.

Problem:: Some residents of a certain planet choose to wear hats and some don't. On planet $\mathrm{X} 80 \%$ of the daughters of women who wear hats also wear hats and 30% of the daughters of women who don't wear hats choose to wear them. Assume that this trend remains unchanged from one generation to the next. What is the corresponding transition matrix?

Problem:: Some residents of a certain planet choose to wear hats and some don't. On planet $\mathrm{X} 80 \%$ of the daughters of women who wear hats also wear hats and 30% of the daughters of women who don't wear hats choose to wear them. Assume that this trend remains unchanged from one generation to the next. What is the corresponding transition matrix?

In general the transition matrix of a Markov Process is a matrix [$a_{i j}$] where $a_{i j}$ is the probability that you end up in state i given that you were in state j the last time.

Problem:: Some residents of a certain planet choose to wear hats and some don't. On planet $\mathrm{X} 80 \%$ of the daughters of women who wear hats also wear hats and 30% of the daughters of women who don't wear hats choose to wear them. Assume that this trend remains unchanged from one generation to the next. What is the corresponding transition matrix?

In general the transition matrix of a Markov Process is a matrix [$a_{i j}$] where $a_{i j}$ is the probability that you end up in state i given that you were in state j the last time. Thus

- All entries are ≥ 0.

Problem:: Some residents of a certain planet choose to wear hats and some don't. On planet $\mathrm{X} 80 \%$ of the daughters of women who wear hats also wear hats and 30% of the daughters of women who don't wear hats choose to wear them. Assume that this trend remains unchanged from one generation to the next. What is the corresponding transition matrix?

In general the transition matrix of a Markov Process is a matrix [$a_{i j}$] where $a_{i j}$ is the probability that you end up in state i given that you were in state j the last time. Thus

- All entries are ≥ 0.
- Columns add to 1 .

Problem:: Some residents of a certain planet choose to wear hats and some don't. On planet $\mathrm{X} 80 \%$ of the daughters of women who wear hats also wear hats and 30% of the daughters of women who don't wear hats choose to wear them. Assume that this trend remains unchanged from one generation to the next. What is the corresponding transition matrix?

In general the transition matrix of a Markov Process is a matrix [$a_{i j}$] where $a_{i j}$ is the probability that you end up in state i given that you were in state j the last time. Thus

- All entries are ≥ 0.
- Columns add to 1 .

Any such matrix is called Stochastic

Stochastic Matrices

Problem: In 1960 40\% of women on planet X wore hats. Use the answer to the previous problem to predict the percentage of women wearing hats in each of the next two generations.

Stochastic Matrices

Problem: In 1960 40\% of women on planet X wore hats. Use the answer to the previous problem to predict the percentage of women wearing hats in each of the next two generations.

In general if there are r states the we let $\left[\begin{array}{c}p_{1} \\ p_{2} \\ \ldots \\ p_{r}\end{array}\right]_{0}$ and $\left[\begin{array}{c}p_{1} \\ p_{2} \\ \ldots \\ p_{r}\end{array}\right]_{n}$ be the initial distribution and the distribution at the nth step.

Problem: In 1960 40\% of women on planet X wore hats. Use the answer to the previous problem to predict the percentage of women wearing hats in each of the next two generations.

In general if there are r states the we let $\left[\begin{array}{c}p_{1} \\ p_{2} \\ \ldots \\ p_{r}\end{array}\right]_{0}$ and $\left[\begin{array}{c}p_{1} \\ p_{2} \\ \ldots \\ p_{r}\end{array}\right]_{n}$ be the initial distribution and the distribution at the nth step. If A is the transition matrix then we see (check it out for our problem):

$$
A\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{n}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{n+1}
$$

Stochastic Matrices

$$
A\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{1},
$$

Stochastic Matrices

$$
A\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{1}, \quad A\left(A\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}\right)=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{2} .
$$

Stochastic Matrices

$$
\begin{gathered}
A\left[\begin{array}{l}
p_{1} \\
p_{2} \\
\cdots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{1}, \quad A\left(A\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}\right)=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{2} \\
A^{2}\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdots \\
p_{r}
\end{array}\right]_{2} .
\end{gathered}
$$

Stochastic Matrices

$$
\begin{gathered}
A\left[\begin{array}{l}
p_{1} \\
p_{2} \\
\cdots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{1}, \quad A\left(A\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}\right)=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{2} . \\
A^{2}\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdots \\
p_{r}
\end{array}\right]_{2} .
\end{gathered}
$$

In general.

$$
A^{n}\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{n} .
$$

Stochastic Matrices

$$
\begin{gathered}
A\left[\begin{array}{l}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{1}, \quad A\left(A\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}\right)=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{2} . \\
A^{2}\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{2} .
\end{gathered}
$$

In general.

$$
A^{n}\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{0}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{r}
\end{array}\right]_{n} .
$$

Note that A^{n} is another Stochastic matrix!

Problem Taxis pick up and deliver passengers in a city that is divided into three zones. Records kept by drivers show that of the passengers picked up in zone I, 50\% are taken to zone I, 40% to zone II, and 10% to zone III. Of the passengers picked up in zone II, 40% go to zone I, 30% go to zone II, and 30% to zone III. Of the passengers picked up in zone III, 20% go to zone I, 60% to zone II, and 20% to zone III.

Problem Taxis pick up and deliver passengers in a city that is divided into three zones. Records kept by drivers show that of the passengers picked up in zone I, 50\% are taken to zone I, 40% to zone II, and 10% to zone III. Of the passengers picked up in zone II, 40% go to zone I, 30% go to zone II, and 30% to zone III. Of the passengers picked up in zone III, 20% go to zone I, 60% to zone II, and 20% to zone III.
Suppose that at the beginning of the day 60% of the taxis are in zone I, 10% in zone II, and 30% in zone III.

Problem Taxis pick up and deliver passengers in a city that is divided into three zones. Records kept by drivers show that of the passengers picked up in zone I, 50\% are taken to zone I, 40% to zone II, and 10% to zone III. Of the passengers picked up in zone II, 40% go to zone I, 30% go to zone II, and 30% to zone III. Of the passengers picked up in zone III, 20% go to zone I, 60% to zone II, and 20% to zone III.
Suppose that at the beginning of the day 60% of the taxis are in zone $\mathrm{I}, 10 \%$ in zone II, and 30% in zone III.
What is the distributions of taxis in the various zones after all have had one rider? two riders?

Problem Taxis pick up and deliver passengers in a city that is divided into three zones. Records kept by drivers show that of the passengers picked up in zone I, 50% are taken to zone I, 40% to zone II, and 10% to zone III. Of the passengers picked up in zone II, 40% go to zone I, 30% go to zone II, and 30% to zone III. Of the passengers picked up in zone III, 20% go to zone I, 60% to zone II, and 20% to zone III.
Suppose that at the beginning of the day 60% of the taxis are in zone I, 10% in zone II, and 30% in zone III.
What is the distributions of taxis in the various zones after all have had one rider? two riders?

The interesting question is "What happens in the long run?". The process often settles down.

Stochastic Matrices

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend?

Stochastic Matrices

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

Stochastic Matrices

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend?
What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.

Stochastic Matrices

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%,

Stochastic Matrices

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%,

Stochastic Matrices

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{cc}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%,

Stochastic Matrices

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{cc}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%,

Stochastic Matrices

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{cc}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, $30 \%, 32 \%$, 32.8%, 33.12%,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, $30 \%, 32 \%, 32.8 \%, 33.12 \%, 33.25 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, $30 \%, 32 \%, 32.8 \%, 33.12 \%, 33.25 \%$, 33.30%,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, $30 \%, 32 \%, 32.8 \%, 33.12 \%, 33.25 \%, 33.30 \%$, 33.32%,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, $32.8 \%, 33.12 \%, 33.25 \%$, 33.30%, 33.32%, 33.33%,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, 33.33%,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: 40%,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, 33.50%,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, $33.50 \%, 33.40 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, $33.50 \%, 33.40 \%, 33.36 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, $33.50 \%, 33.40 \%, 33.36 \%, 33.34 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, $33.50 \%, 33.40 \%, 33.36 \%, 33.34 \%, 33.34 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, $33.50 \%, 33.40 \%, 33.36 \%, 33.34 \%, 33.34 \%, 33.34 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, $33.50 \%, 33.40 \%, 33.36 \%, 33.34 \%, 33.34 \%, 33.34 \%, 33.33 \%$,

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, $30 \%, 32 \%, 32.8 \%, 33.12 \%, 33.25 \%, 33.30 \%, 33.32 \%, 33.33 \%$, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, $33.50 \%, 33.40 \%, 33.36 \%, 33.34 \%, 33.34 \%, 33.34 \%, 33.33 \%$, 33.33\%.

Problem: On planet Y 25% of women wear hats and the transition matrix is $A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$ What is the long term trend? What about on planet Z where 40% wear hats and they have the same transition matrix?

The initial state is $\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}$, while $A^{n}\left[\begin{array}{l}.25 \\ .75\end{array}\right]_{0}=[]_{n}$.
Doing computations we find that the percentage of hat wearing women on planet Y by generation for 11 generations are 25%, 30%, 32%, 32.8%, 33.12%, 33.25%, 33.30%, 33.32%, 33.33%, $33.33 \%, 33.33 \%, 33.33 \%$.
It seems to settle down to $\frac{1}{3}$.
The same computation for planet Z is: $40 \%, 36 \%, 34.4 \%, 33.76 \%$, $33.50 \%, 33.40 \%, 33.36 \%, 33.34 \%, 33.34 \%, 33.34 \%, 33.33 \%$, 33.33%.
Which also settles down to $\frac{1}{3}$.

Stochastic Matrices

So long term trend does not seem to depend on initial conditions.

Stochastic Matrices

So long term trend does not seem to depend on initial conditions. From another point of view if we compute A^{n} we see

$$
A^{2}=\left[\begin{array}{ll}
.44 & .28 \\
.56 & .72
\end{array}\right], A^{3}=, \ldots, \quad A^{10}=\left[\begin{array}{ll}
.3334 & .3333 \\
.6666 & .6667
\end{array}\right]
$$

Stochastic Matrices

So long term trend does not seem to depend on initial conditions. From another point of view if we compute A^{n} we see

$$
A^{2}=\left[\begin{array}{ll}
.44 & .28 \\
.56 & .72
\end{array}\right], \quad A^{3}=, \ldots, \quad A^{10}=\left[\begin{array}{ll}
.3334 & .3333 \\
.6666 & .6667
\end{array}\right]
$$

So it seems A^{n} gets close to $\left[\begin{array}{ll}\frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3}\end{array}\right]$.

So long term trend does not seem to depend on initial conditions. From another point of view if we compute A^{n} we see

$$
A^{2}=\left[\begin{array}{ll}
.44 & .28 \\
.56 & .72
\end{array}\right], A^{3}=, \ldots, \quad A^{10}=\left[\begin{array}{ll}
.3334 & .3333 \\
.6666 & .6667
\end{array}\right]
$$

So it seems A^{n} gets close to $\left[\begin{array}{ll}\frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3}\end{array}\right]$.
Start with any initial state $\left[\begin{array}{c}a \\ 1-a\end{array}\right]_{0}$ then $A^{n}\left[\begin{array}{c}a \\ 1-a\end{array}\right]_{0}$ approaches $\left[\begin{array}{cc}\frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3}\end{array}\right]\left[\begin{array}{c}a \\ 1-a\end{array}\right]_{0}=\left[\begin{array}{l}\frac{1}{3} \\ \frac{2}{3}\end{array}\right]$.

So long term trend does not seem to depend on initial conditions. From another point of view if we compute A^{n} we see

$$
A^{2}=\left[\begin{array}{ll}
.44 & .28 \\
.56 & .72
\end{array}\right], A^{3}=, \ldots, \quad A^{10}=\left[\begin{array}{ll}
.3334 & .3333 \\
.6666 & .6667
\end{array}\right]
$$

So it seems A^{n} gets close to $\left[\begin{array}{ll}\frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3}\end{array}\right]$.
Start with any initial state $\left[\begin{array}{c}a \\ 1-a\end{array}\right]_{0}$ then $A^{n}\left[\begin{array}{c}a \\ 1-a\end{array}\right]_{0}$ approaches $\left[\begin{array}{cc}\frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3}\end{array}\right]\left[\begin{array}{c}a \\ 1-a\end{array}\right]_{0}=\left[\begin{array}{l}\frac{1}{3} \\ \frac{2}{3}\end{array}\right]$.

This happens a lot!!!

Regular Stochastic Matrices

A stochastic matrix A will be called regular if some power A^{n} has no 0 entries.

Regular Stochastic Matrices

A stochastic matrix A will be called regular if some power A^{n} has no 0 entries. Which of the below are regular?

$$
\left[\begin{array}{ll}
.2 & .5 \\
.8 & .5
\end{array}\right], \quad\left[\begin{array}{ll}
0 & .4 \\
1 & .6
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & .4 \\
0 & .6
\end{array}\right]
$$

Regular Stochastic Matrices

A stochastic matrix A will be called regular if some power A^{n} has no 0 entries. Which of the below are regular?

$$
\left[\begin{array}{ll}
.2 & .5 \\
.8 & .5
\end{array}\right], \quad\left[\begin{array}{ll}
0 & .4 \\
1 & .6
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & .4 \\
0 & .6
\end{array}\right]
$$

If A is a regular stochastic matrix then:

- A^{n} approaches a certain matrix (called the stable matrix of A) as n gets large.

Regular Stochastic Matrices

A stochastic matrix A will be called regular if some power A^{n} has no 0 entries. Which of the below are regular?

$$
\left[\begin{array}{ll}
.2 & .5 \\
.8 & .5
\end{array}\right], \quad\left[\begin{array}{ll}
0 & .4 \\
1 & .6
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & .4 \\
0 & .6
\end{array}\right]
$$

If A is a regular stochastic matrix then:

- A^{n} approaches a certain matrix (called the stable matrix of A) as n gets large.
- For any initial distribution []$_{0}, A^{n}[]_{0}=[]_{n}$ approaches a certain distribution called the stable distribution.

Regular Stochastic Matrices

A stochastic matrix A will be called regular if some power A^{n} has no 0 entries. Which of the below are regular?

$$
\left[\begin{array}{ll}
.2 & .5 \\
.8 & .5
\end{array}\right], \quad\left[\begin{array}{ll}
0 & .4 \\
1 & .6
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & .4 \\
0 & .6
\end{array}\right]
$$

If A is a regular stochastic matrix then:

- A^{n} approaches a certain matrix (called the stable matrix of A) as n gets large.
- For any initial distribution []$_{0}, A^{n}[]_{0}=[]_{n}$ approaches a certain distribution called the stable distribution.
- All columns of the stable matrix equal the stable distribution (and hence are all equal).

Regular Stochastic Matrices

A stochastic matrix A will be called regular if some power A^{n} has no 0 entries. Which of the below are regular?

$$
\left[\begin{array}{ll}
.2 & .5 \\
.8 & .5
\end{array}\right], \quad\left[\begin{array}{ll}
0 & .4 \\
1 & .6
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & .4 \\
0 & .6
\end{array}\right]
$$

If A is a regular stochastic matrix then:

- A^{n} approaches a certain matrix (called the stable matrix of A) as n gets large.
- For any initial distribution []$_{0}, A^{n}[]_{0}=[]_{n}$ approaches a certain distribution called the stable distribution.
- All columns of the stable matrix equal the stable distribution (and hence are all equal).
- The stable distribution X satisfies the system of linear equations given by $A X=X$ and the sum of the entries of X is equal to 1 .

Regular Stochastic Matrices

Regular Stochastic Matrices

The last statement is true since if X is the stable distribution then $A^{n} X$ approaches X.

Regular Stochastic Matrices

The last statement is true since if X is the stable distribution then $A^{n} X$ approaches X. Hence $A^{n+1} X$ approaches $A X$ and also X. Hence $A X=X$.

Regular Stochastic Matrices

The last statement is true since if X is the stable distribution then $A^{n} X$ approaches X. Hence $A^{n+1} X$ approaches $A X$ and also X. Hence $A X=X$.
The last statement lets us find the stable distribution and hence the stable matrix.
Problem: Find the stable distribution and stable matrix of
$A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$

Regular Stochastic Matrices

The last statement is true since if X is the stable distribution then $A^{n} X$ approaches X. Hence $A^{n+1} X$ approaches $A X$ and also X. Hence $A X=X$.
The last statement lets us find the stable distribution and hence the stable matrix.
Problem: Find the stable distribution and stable matrix of
$A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$
Problem Do the taxi example.

Regular Stochastic Matrices

The last statement is true since if X is the stable distribution then $A^{n} X$ approaches X. Hence $A^{n+1} X$ approaches $A X$ and also X. Hence $A X=X$.
The last statement lets us find the stable distribution and hence the stable matrix.
Problem: Find the stable distribution and stable matrix of
$A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$
Problem Do the taxi example.
Problem Abby, Bob, and Chuck are tossing a ball to each other. When Abby has the ball she throws it to Bob $\frac{1}{4}$ of the time and to Chuck $\frac{3}{4}$ of the time. When Bob has the ball he throws it to Abby $\frac{1}{2}$ of the time and to Chuck $\frac{1}{2}$ of the time. When Chuck has the ball he throws it to Abby $\frac{3}{4}$ of the time and to Bob $\frac{1}{4}$ of the time.

Regular Stochastic Matrices

The last statement is true since if X is the stable distribution then $A^{n} X$ approaches X. Hence $A^{n+1} X$ approaches $A X$ and also X. Hence $A X=X$.
The last statement lets us find the stable distribution and hence the stable matrix.
Problem: Find the stable distribution and stable matrix of
$A=\left[\begin{array}{ll}.6 & .2 \\ .4 & .8\end{array}\right]$
Problem Do the taxi example.
Problem Abby, Bob, and Chuck are tossing a ball to each other. When Abby has the ball she throws it to Bob $\frac{1}{4}$ of the time and to Chuck $\frac{3}{4}$ of the time. When Bob has the ball he throws it to Abby $\frac{1}{2}$ of the time and to Chuck $\frac{1}{2}$ of the time. When Chuck has the ball he throws it to Abby $\frac{3}{4}$ of the time and to Bob $\frac{1}{4}$ of the time. In the long run, what percentage of the time does each player get the ball?

Absorbing States

A state is absorbing if once there you stay there.

Absorbing States

A state is absorbing if once there you stay there.

$$
A=\left[\begin{array}{llll}
.5 & .1 & 0 & .5 \\
0 & .2 & 0 & .2 \\
.5 & .3 & 1 & .2 \\
0 & .4 & 0 & .1
\end{array}\right]
$$

is a Stochastic matrix where the third state is absorbing.

Absorbing States

A state is absorbing if once there you stay there.

$$
A=\left[\begin{array}{llll}
.5 & .1 & 0 & .5 \\
0 & .2 & 0 & .2 \\
.5 & .3 & 1 & .2 \\
0 & .4 & 0 & .1
\end{array}\right]
$$

is a Stochastic matrix where the third state is absorbing. Consider the Stochastic matrix:

$$
A=\left[\begin{array}{llll}
1 & .1 & 0 & 0 \\
0 & .2 & 0 & 1 \\
0 & .3 & 1 & 0 \\
0 & .4 & 0 & 0
\end{array}\right]
$$

What are the absorbing states?

Absorbing States

A state is absorbing if once there you stay there.

$$
A=\left[\begin{array}{llll}
.5 & .1 & 0 & .5 \\
0 & .2 & 0 & .2 \\
.5 & .3 & 1 & .2 \\
0 & .4 & 0 & .1
\end{array}\right]
$$

is a Stochastic matrix where the third state is absorbing.
Consider the Stochastic matrix:

$$
A=\left[\begin{array}{llll}
1 & .1 & 0 & 0 \\
0 & .2 & 0 & 1 \\
0 & .3 & 1 & 0 \\
0 & .4 & 0 & 0
\end{array}\right]
$$

What are the absorbing states?
State 1 is, state 2 is not, state 3 is, state 4 is not.

Absorbing Stochastic Matrices

Definition: An Absorbing stochastic matrix is a Stochastic matrix that satisfies:

- 1) There is at least one absorbing state.

Absorbing Stochastic Matrices

Definition: An Absorbing stochastic matrix is a Stochastic matrix that satisfies:

- 1) There is at least one absorbing state.
- 2) From any state you can get to an absorbing state directly or through one or more intermediate states.

Absorbing Stochastic Matrices

Definition: An Absorbing stochastic matrix is a Stochastic matrix that satisfies:

- 1) There is at least one absorbing state.
- 2) From any state you can get to an absorbing state directly or through one or more intermediate states.
Check the two examples above.

Absorbing Stochastic Matrices

Definition: An Absorbing stochastic matrix is a Stochastic matrix that satisfies:

- 1) There is at least one absorbing state.
- 2) From any state you can get to an absorbing state directly or through one or more intermediate states.
Check the two examples above. Yes to both.

Absorbing Stochastic Matrices

Definition: An Absorbing stochastic matrix is a Stochastic matrix that satisfies:

- 1) There is at least one absorbing state.
- 2) From any state you can get to an absorbing state directly or through one or more intermediate states.
Check the two examples above. Yes to both.
Consider

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Absorbing Stochastic Matrices

Definition: An Absorbing stochastic matrix is a Stochastic matrix that satisfies:

- 1) There is at least one absorbing state.
- 2) From any state you can get to an absorbing state directly or through one or more intermediate states.
Check the two examples above. Yes to both.
Consider

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Nope!

Absorbing Stochastic Matrices

Definition: An Absorbing stochastic matrix is a Stochastic matrix that satisfies:

- 1) There is at least one absorbing state.
- 2) From any state you can get to an absorbing state directly or through one or more intermediate states.
Check the two examples above. Yes to both.
Consider

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Nope!
It turns out that if A is an absorbing stochastic matrix then A^{n} also settles down to a limit called the Stable matrix.

Absorbing Stochastic Matrices

Definition: An Absorbing stochastic matrix is a Stochastic matrix that satisfies:

- 1) There is at least one absorbing state.
- 2) From any state you can get to an absorbing state directly or through one or more intermediate states.
Check the two examples above. Yes to both.
Consider

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Nope!
It turns out that if A is an absorbing stochastic matrix then A^{n} also settles down to a limit called the Stable matrix. To analyze this, first reorder your states so that the absorbing ones come first.

Absorbing Stochastic Matrices

A takes the form:

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Absorbing Stochastic Matrices

A takes the form:

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Here I is the $k \times k$ identity matrix where k is the number of absorbing states.

Absorbing Stochastic Matrices

A takes the form:

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Here I is the $k \times k$ identity matrix where k is the number of absorbing states. S is a $k \times(n-k)$ matrix

Absorbing Stochastic Matrices

A takes the form:

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Here I is the $k \times k$ identity matrix where k is the number of absorbing states. S is a $k \times(n-k)$ matrix 0 is an $(n-k) \times k$ matrix of zeros,

Absorbing Stochastic Matrices

A takes the form:

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Here I is the $k \times k$ identity matrix where k is the number of absorbing states. S is a $k \times(n-k)$ matrix 0 is an $(n-k) \times k$ matrix of zeros, and R is an $(n-k) \times(n-k)$ matrix.

Absorbing Stochastic Matrices

A takes the form:

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Here I is the $k \times k$ identity matrix where k is the number of absorbing states. S is a $k \times(n-k)$ matrix 0 is an $(n-k) \times k$ matrix of zeros, and R is an $(n-k) \times(n-k)$ matrix.
Our second example (after switching second and third states) becomes:

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & .3 & 0 \\
0 & 0 & .2 & 1 \\
0 & 0 & .4 & 0
\end{array}\right]
$$

Absorbing Stochastic Matrices

Problem: In a new voting scheme each voter can go to the polls many times. At the poll they can listen to arguments for and against the two candidates. They can choose during any visit to cast a vote (which they can not now change). Over time it is discovered that during a visit to the polls an Undecided voter decides to vote for candidate $A 20 \%$ of the time, for candidate B 30% of the time, and stays Undecided 50% of the time.

Absorbing Stochastic Matrices

Problem: In a new voting scheme each voter can go to the polls many times. At the poll they can listen to arguments for and against the two candidates. They can choose during any visit to cast a vote (which they can not now change). Over time it is discovered that during a visit to the polls an Undecided voter decides to vote for candidate $A 20 \%$ of the time, for candidate B 30% of the time, and stays Undecided 50% of the time. Describe this as a stochastic process.

Absorbing Stochastic Matrices

Problem: In a new voting scheme each voter can go to the polls many times. At the poll they can listen to arguments for and against the two candidates. They can choose during any visit to cast a vote (which they can not now change). Over time it is discovered that during a visit to the polls an Undecided voter decides to vote for candidate $A 20 \%$ of the time, for candidate B 30% of the time, and stays Undecided 50% of the time. Describe this as a stochastic process. What are the absorbing states?

Absorbing Stochastic Matrices

Problem: In a new voting scheme each voter can go to the polls many times. At the poll they can listen to arguments for and against the two candidates. They can choose during any visit to cast a vote (which they can not now change). Over time it is discovered that during a visit to the polls an Undecided voter decides to vote for candidate $A 20 \%$ of the time, for candidate B 30% of the time, and stays Undecided 50% of the time. Describe this as a stochastic process. What are the absorbing states? What is the long term trend?

Absorbing Stochastic Matrices

Problem: In a new voting scheme each voter can go to the polls many times. At the poll they can listen to arguments for and against the two candidates. They can choose during any visit to cast a vote (which they can not now change). Over time it is discovered that during a visit to the polls an Undecided voter decides to vote for candidate $A 20 \%$ of the time, for candidate B 30% of the time, and stays Undecided 50% of the time. Describe this as a stochastic process. What are the absorbing states? What is the long term trend?

Notice that for absorbing matrices the long term trend depends on the initial state!
Example Try the initial states $\left[\begin{array}{l}.4 \\ .4 \\ .2\end{array}\right]$ and $\left[\begin{array}{l}.2 \\ .3 \\ .5\end{array}\right]$.

Absorbing Stochastic Matrices

Problem: In a new voting scheme each voter can go to the polls many times. At the poll they can listen to arguments for and against the two candidates. They can choose during any visit to cast a vote (which they can not now change). Over time it is discovered that during a visit to the polls an Undecided voter decides to vote for candidate $A 20 \%$ of the time, for candidate B 30% of the time, and stays Undecided 50% of the time. Describe this as a stochastic process. What are the absorbing states? What is the long term trend?

Notice that for absorbing matrices the long term trend depends on the initial state!
Example Try the initial states $\left[\begin{array}{l}.4 \\ .4 \\ .2\end{array}\right]$ and $\left[\begin{array}{l}.2 \\ .3 \\ .5\end{array}\right]$.
No mater what the initial states the long term trend sends all objects to the absorbing states.

Absorbing Stochastic Matrices

There is a general way to compute the Stable matrix. If

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Absorbing Stochastic Matrices

There is a general way to compute the Stable matrix. If

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Then the stable matrix A^{∞} is

$$
A^{\infty}=\left[\begin{array}{cc}
I & S(I-R)^{-1} \\
0 & 0
\end{array}\right]
$$

Absorbing Stochastic Matrices

There is a general way to compute the Stable matrix. If

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Then the stable matrix A^{∞} is

$$
A^{\infty}=\left[\begin{array}{cc}
I & S(I-R)^{-1} \\
0 & 0
\end{array}\right]
$$

Problem: let $A=\left[\begin{array}{lll}1 & 0 & .2 \\ 0 & 1 & .4 \\ 0 & 0 & .4\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & .6 \\ 0 & 1 & .2 \\ 0 & 0 & .2\end{array}\right]$. Find the
stable matrices.

Absorbing Stochastic Matrices

There is a general way to compute the Stable matrix. If

$$
A=\left[\begin{array}{ll}
I & S \\
0 & R
\end{array}\right]
$$

Then the stable matrix A^{∞} is

$$
A^{\infty}=\left[\begin{array}{cc}
I & S(I-R)^{-1} \\
0 & 0
\end{array}\right]
$$

Problem: let $A=\left[\begin{array}{lll}1 & 0 & .2 \\ 0 & 1 & .4 \\ 0 & 0 & .4\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & .6 \\ 0 & 1 & .2 \\ 0 & 0 & .2\end{array}\right]$. Find the
stable matrices.
What about our previous example:

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & .3 & 0 \\
0 & 0 & .2 & 1 \\
0 & 0 & .4 & 0
\end{array}\right]
$$

END OF COURSE - GOOD LUCK ON THE FINAL!!!

