
SMALL VOLUME ON BIG N-SPHERES
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Abstract. We consider Riemannian metrics on the n-sphere for
n ≥ 3 such that the distance between any pair of antipodal points
is bounded below by 1. We show that the volume can be arbitrarily
small. This is in contrast to the 2-dimensional case where Berger
has shown that Area ≥ 1/2.

In 1977 Berger [B77] considered the set of Riemannian metrics g on
the n-sphere such that d(x,A(x)) ≥ 1 and defined the constants:

h(n) ≡ inf{V ol(g)}.
We will also consider h̄(n) ≡ inf{V ol(g)|A∗g = g}. Where you can
think of A as the standard antipodal map or simply set A to be any
fixed point free diffeomorphism of Sn with A2 = Id.

One of Berger’s reasons for his interest in these invariants was their
use in getting lower bounds on the volume of balls B(p,R) in a com-
plete Riemannian manifold with R less than half the injectivity radius
inj(M). In this case all geodesics in the ball minimize distance. Hence
for all r ≤ R the distance in B(p,R) between antipodal points of
S(p, r) = ∂B(p, r) is 2r; and thus the intrinsic distance in S(p, r) is
even larger. So we see V ol(S(p, r)) ≥ h(n− 1)(2r)n−1 and

V ol(B(p,R)) =

∫ R

0

V ol(S(p, r))dr ≥

≥
∫ R

0

h(n− 1)(2r)n−1dr = 2n−1h(n− 1)

n
Rn.

Berger noted that h(1) = 2 and proved h(2) ≥ 1
2

to get a (non-
sharp) lower bound V ol(B(p,R)) ≥ 2R2 on the volume of 2-balls and
V ol(B(p,R)) ≥ 2

3
R3 for 3-balls when R ≤ inj(M)/2.

In this short note we show by relatively easy examples:

Theorem 0.1. h(n) = 0 for n ≥ 3.

This question and some history surrounding it was also discussed in
section 6 of [CK03]. In particular, Ivanov (see [I98]) has given examples
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of a sequence of metrics on S3 that Gromov-Housdorff converge to the
standard metric but whose volumes go to zero.

The main open question about volume of balls can be stated as a
conjecture which is open in all dimensions (even n = 2!).

Conjecture 0.2. If ωn represents the volume of the unit n-sphere:

a) For any r ≤ inj(M)
2

, V ol(B(r)) ≥ ωn

2
( 2

π
)nrn with equality holding

only if the ball is isometric to a hemisphere.
b) For any r ≤ inj(M), V ol(B(r)) ≥ ωn

πn rn, where equality holds if and
only if M is isometric to the round sphere of injectivity radius r (i.e.
extrinsic radius r

π
).

As mentioned above, Berger [B77] gave non-sharp lower bounds for
n = 2 and n = 3. The author gave nonsharp lower bounds in all di-
mensions in [Cr80] and showed that b) was true for the “average” ball
(i.e. 1

V ol(M)

∫
M

V ol(B(x, r))dx ≥ ωn

πn rn) for any compact manifold M

in any dimension [Cr84]. This followed Berger’s isoembolic inequal-
ity V ol(M) ≥ ωn

πn inj(M)n, where equality holds if and only if M is
isometric to the round sphere.

As to the question of the exact value of h(2) we have the following
interesting

Conjecture 0.3. h(2) = 4
π

and the round sphere is the only space that
achieves this.

The situation for h̄ is quite different. By identifying antipodal points
we get a metric on RP n such that all non contractible closed curves
have length at least 1 (i.e. sys(M) ≥ 1). Hence Pu’s Theorem [Pu52]
shows h̄(2) = 4

π
, while Gromov’s theorem [Gr83] gives us nonsharp

positive lower bounds for h̄(n) for all n. The question as to the actual
values of h̄(n) for n ≥ 3 is a hard and very interesting one.

One other place where this notion came up is in [Cr02]. There it is
shown that for a Riemannian metric on a 3-sphere with d(x,A(x)) ≥ D
and L = length of the shortest closed geodesic, we have V ol1/3 ≥
const min{L, 2D}. In this note we show that there is no constant such
that V ol1/3 ≥ constD. It is still an open (and very interesting) question
if there is a constant so that V ol1/3 ≥ constL.

We now construct the examples on the 3-sphere.
We will let MBε be the ε neighborhood in the flat plane R2 of a

tripod (three unit length line segments from the origin making angles
2π
3

with each other). As ε goes to 0 the area goes to 0 while the length
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of the boundary goes to 6. This has been known for a while as an ex-
ample of a metric on a 2-disc whose area goes to 0 but such that on the
boundary antipodal points satisfy dMBε(p,Aε(p)) ≥ dR2(p,Aε(p) ≥ 1.
Here Aε(p) is the point half way around the boundary. (Note that the
non convexity of MBε is not the point here since one could use equilat-
eral triangles in a more and more negatively curved simply connected
space form.)

Our examples are just M3
ε = ∂(MBε ×MBε), which as the bound-

ary of a 4-ball is a 3-sphere. Since Mε = (∂(MBε) ×MBε) ∪ (MBε ×
∂(MBε)), V ol(Mε) = 2Area(MBε)L(∂(MBε)). Hence limε→0 V ol(Mε) =
0.

We need to define the antipodal map Āε on Mε. First extend Aε to
a continuous homeomorphism Aε : MBε → MBε with a single fixed
point (the origin in R2 say). One can do this simply by mapping the
line segment between the origin and p ∈ ∂(MBε) to the line segment
between the origin and Aε(p). Then let

Āε = (Aε × Aε)|Mε .

For a point (p, q) ∈ ∂(MBε)×MBε ⊂ Mε we have

dMε((p, q), Āε(p, q)) = dMε((p, q), (Aε(p), Aε(q))) ≥
≥ dR4((p, q), (Aε(p), Aε(q))) ≥ dR2(p,Aε(p)) ≥ 1.

Similarly if (p, q) ∈ MBε×∂(MBε) ⊂ Mε then dMε((p, q), Āε(p, q)) ≥ 1.
This completes the proof of the theorem in the 3 dimensional case

after smoothing the metric and Āε. The higher dimensional cases
are handled by spherical suspension. Specifically given a metric g
on the n sphere Sn we construct a (singular) warped product met-
ric g′ = cos2(t)g + dt2 on the n + 1 sphere Sn+1 = (Sn × [−π

2
, π

2
])/ ∼,

where (x, π
2
) ∼ (y, π

2
) and (x,−π

2
) ∼ (y,−π

2
) for all x, y ∈ Sn. The

antipodal map An+1 : Sn+1 → Sn+1 is just An+1(x, t) = (An(x),−t).
It is easy to check that if g has d(x,An(x)) ≥ π and V ol(g) = V then

D(x,An+1(x)) ≥ π and V ol(g′) = V ol(g)
∫ π

2

−π
2
cosn(t)dt = ωn+1

ωn
V ol(g).

So spherically suspending (and smoothing) a sequence of examples that
shows h(n) = 0 gives us a sequence showing that h(n + 1) = 0.

References

[B77] M. Berger, Volume et rayon d’injectivité dans les variétés riemanniennes
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