
Chapter 6

The Radon transform

In Chapter 3 we introduced the Radon transform and discussed its simpler features. After
reviewing its definition we obtain several properties of the Radon transform analogous to
properties of the Fourier transform. We next prove the Central Slice Theorem which estab-
lishes a close connection between the Fourier transform and the Radon transform. Using
it, the inversion formula for the Radon transform is deduced from the inversion formula for
the Fourier transform. In imaging this formula is known as the filtered back-projection for-
mula. After analyzing the exact formula we consider methods for approximately inverting
the Radon transform which are relevant in medical imaging.

6.1 The Radon transform

See: A.2.3, A.6.

In section 1.2.1 we identified R × S1 with the space of oriented lines in R2. The pair
(t,ωωω) corresponds to the line

lt,ωωω = {x : 〈ωωω,x〉 = t} = {tωωω + sω̂̂ω̂ω : s ∈ R}.

Here ω̂̂ω̂ω is the unit vector perpendicular to ωωω with the orientation determined by

det(ωωωω̂̂ω̂ω) > 0.

The variable t is called the affine parameter, it is the oriented distance of the line lt,ωωω to
the origin.

Representing the point ωωω ∈ S1 as

ωωω(θ) = (cos θ, sin θ)

allows an identification of R×S1 with R× [0, 2π).With this identification dθ can be used as
a line element in the S1-direction. This is often denoted by dωωω in the sequel. The integral
of a function h over S1 × R is given by

2π∫

0

∞∫

−∞

h(t,ωωω(θ))dtdθ,
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which is often denoted
2π∫

0

∞∫

−∞

h(t,ωωω)dtdωωω.

Definition 6.1.1. The set L2(R×S1) consists of locally integrable functions for which the
square-integral,

‖h‖2L2(R×S1) =

2π∫

0

∞∫

−∞

|h(t,ωωω(θ))|2dtdθ (6.1)

is finite.

A function h on R × S1 is continuous if h(t, θ)
d
= h(t,ωωω(θ)) is 2π-periodic in θ and

continuous as a function on R× [0, 2π]. Similarly h is differentiable if it is 2π-periodic and
differentiable on R × [0, 2π] and ∂θh is also 2π-periodic. Higher orders of differentiability
have similar definitions.

Recall that the Radon transform of f at (t,ωωω) is defined by the integral

Rf(t,ωωω) =

∞∫

−∞

f(tωωω + sω̂̂ω̂ω)ds.

For the moment we restrict our attention to piecewise continuous functions with bounded
support. Because lt,ωωω and l−t,−ωωω are the same line, the Radon transform is an even function

Rf(−t,−ωωω) = Rf(t,ωωω). (6.2)

The Radon transform has several properties analogous to those established for the Fourier
transform in the previous chapter. Suppose that f and g are functions with bounded
supported. There is a simple formula relating R(f ∗ g) to Rf and Rg.

Proposition 6.1.1. Let f and g be piecewise continuous functions with bounded support
then

R[f ∗ g](t,ωωω) =
∞∫

−∞

Rf(s,ωωω)Rg(t− s,ωωω)ds. (6.3)

Remark 6.1.1. Colloquially one says that the Radon transform converts convolution in the
plane to convolution in the affine parameter.

Proof. The proof is a calculation. Fix a direction ωωω, coordinates (s, t) for the plane are defined by
the assignment

(s, t) 7→ sω̂̂ω̂ω + tωωω.

This is an orthogonal change of variables so the area element on R2 is given by dsdt. In these
variables the convolution of f and g becomes

f ∗ g(sω̂̂ω̂ω + tωωω) =

∞∫

−∞

∞∫

−∞

f(aω̂̂ω̂ω + bωωω)g((s− a)ω̂̂ω̂ω + (t− b)ωωω)dadb.
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The Radon transform of f ∗ g is computing by switching the order of the integrations:

R(f ∗ g)(τ,ωωω) =
∞∫

−∞

f ∗ g(τωωω + sω̂̂ω̂ω)ds

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

f(aω̂̂ω̂ω + bωωω)g((s− a)ω̂̂ω̂ω + (τ − b)ωωω)dadbds

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

f(aω̂̂ω̂ω + bωωω)g((s− a)ω̂̂ω̂ω + (τ − b)ωωω)dsdadb

=

∞∫

−∞

Rf(b,ωωω)Rg(τ − b,ωωω)db.

(6.4)

In the second to last line we interchanged the s-integration with the a and b integrations.

Remark 6.1.2. The smoothness of a function with bounded support is reflected in the decay
properties of its Fourier transform. From Proposition 6.1.1 it follows that the smoothness
of a function of bounded support is also reflected in the smoothness of its Radon transform
in the affine parameter. To see this suppose that f is a continuous function of bounded
support and ϕ is a radially symmetric function, with bounded support and k-continuous
derivatives. The convolution f ∗ϕ has bounded support and k-continuous derivatives. The
Radon transform of ϕ is only a function of t; the Radon transform of the convolution,

R(f ∗ ϕ)(t,ωωω) =
∞∫

−∞

Rf(τ,ωωω)Rϕ(t− τ)dτ,

has the same smoothness in t as Rϕ. Regularity of f is also reflected in smoothness of Rf
in the angular variable, though it is more difficult to see explicitly, see exercise 6.1.6.

For v a vector in R2 the translate of f by v is the function fv(x) = f(x− v). There is
a simple relation between the Radon transform of f and that of fv.

Proposition 6.1.2. Let f be a piecewise continuous function with bounded support then

Rfv(t,ωωω) = Rf(t− 〈ωωω,v〉,ωωω). (6.5)

Using this formula we can relate the Radon transform of f to that of its partial deriva-
tives.

Lemma 6.1.1. If f is a function with bounded support and continuous first partial deriva-
tives, then Rf(t,ωωω) is differentiable in t and

R∂xf(t,ωωω) = −ω1∂tRf(t,ωωω), R∂yf(t,ωωω) = −ω2∂tRf(t,ωωω). (6.6)

Proof. We consider only the x-derivative, the proof for the y-derivative is identical. Let e1 = (1, 0),
the x-partial derivatives of f is defined by

∂xf(x) = lim
h→0

fhe1
(x)− f(x)

h
.
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From (6.5) and the linearity of the Radon transform we conclude that

R

[
fhe1

− f

h

]
(t,ωωω) =

Rf(t− hω1,ωωω)− Rf(t,ωωω)
h

.

The lemma follows by allowing h to tend to zero.

This result extends, by induction to higher partial derivatives.

Proposition 6.1.3. Suppose that f has bounded support and continuous partial derivatives
of order k, then Rf(t,ωωω) is k-times differentiable in t and, for non-negative integers i, j
with i+ j ≤ k, we have the formula

R
[
∂ix∂

j
yf
]
(t,ωωω) = (−1)i+jωi1ωj2∂

i+j
t Rf(t,ωωω). (6.7)

Let A : R2 → R2 be an rigid rotation of the plane, that is A is a linear map such that

〈Av, Aw〉 = 〈v,w〉 for all v,w ∈ R2.

If f is a piecewise continuous function with bounded support then

fA(x) = f(Ax)

is as well. The Radon transform of fA is related to that of f in a simple way.

Proposition 6.1.4. Let A be an rigid rotation of R2 and f a piecewise continuous function
with bounded support. Then

RfA(t,ωωω) = Rf(t, Aωωω). (6.8)

Proof. The result follows from the fact that 〈Aωωω,Aω̂̂ω̂ω〉 = 〈ωωω, ω̂̂ω̂ω〉 = 0 and therefore

RfA(t,ωωω) =

∞∫

−∞

f(tAωωω + sAω̂̂ω̂ω)ds

= Rf(t, Aωωω).

(6.9)

Thus far we have only considered the Radon transform for piecewise continuous func-
tions with bounded supported. As discussed in Chapter 3, this transform extends to suffi-
ciently regular functions with enough decay at infinity. A function belongs to the natural
domain of the Radon transform if the restriction of f to every line lt,ωωω is an absolutely inte-
grable function. If for example, f is a piecewise continuous function, satisfying an estimate
of the form

|f(x)| ≤ M

(1 + ‖x‖)1+ε ,

for an ε > 0, then f belongs to the natural domain of the Radon transform. The results
in this section extend to functions in the natural domain of R. The proofs in this case are
left to the reader. Using functional analytic methods the domain of the Radon transform
can be further extended, allowing functions with both less regularity and slower decay. An
example of such an extension was already presented in section 3.4.3. We return to this in
section 6.6.

Exercises
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Exercise 6.1.1. Prove formula (6.5). The argument is similar to that used in the proof
of (6.3).

Exercise 6.1.2. Give the details of the argument in the proof of Lemma 6.1.1 showing
that Rf(t,ωωω) is differentiable in the t-variable.

Exercise 6.1.3. Show how to derive formula (6.7) from (6.6).

Exercise 6.1.4. The Laplace operator ∆ is defined by ∆f = −(∂2
xf+∂

2
yf). Find a formula

for R[∆f ] in terms of Rf.

Exercise 6.1.5. Suppose that A : R2 → R2 is an arbitrary linear transformation how is
RfA related to Rf?

Exercise 6.1.6. LetAθ denote the rotation through the angle θ. Settingωωω(θ) = (cos θ, sin θ),
let Rf(t, θ) = Rf(t,ωωω(θ)) so that

RfAφ(t, θ) = Rf(t, θ + φ).

Using these formulæ show that

R[(y∂x − x∂y)f ] (t, θ) = (∂θ R)f(t, θ).

6.2 Inversion of the Radon Transform

Now we are ready to use the Fourier transform to invert the Radon transform.

6.2.1 The Central Slice Theorem

The Fourier transform and Radon transform are connected in a very simple way. In medical
imaging this relationship is called the Central Slice Theorem.

Theorem 6.2.1 (Central slice theorem). Let f be an absolutely integrable function in
the natural domain of R. For any real number r and unit vector ωωω we have the identity

∞∫

−∞

Rf(ωωω, t)e−itrdt = f̂(rωωω). (6.10)

Proof. Using the definition of the Radon transform we comput the integral on the left:

∞∫

−∞

Rf(ωωω, t)e−itrdt =

∞∫

−∞

∞∫

−∞

f(tωωω + sω̂̂ω̂ω)e−itrdsdt. (6.11)

This integral is absolutely convergent and therefore we may make the change of variables, x =
tωωω + sω̂̂ω̂ω. Checking that the Jacobian determinant is 1 and noting that

t = 〈x,ωωω〉,
the above integral therefore becomes

∞∫

−∞

∞∫

−∞

f(tωωω + sω̂̂ω̂ω)e−itrdsdt =

∫

R2

f(x)e−i〈x,ωωω〉rdx

= f̂(rωωω)

(6.12)

This completes the proof of the central slice theorem.
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For a given vector ξξξ = (ξ1, ξ2) the inner product, 〈x, ξξξ〉 is constant along any line
perpendicular to the direction of ξξξ. The Central Slice Theorem interprets the computation
of the Fourier transform at ξξξ as a two step process:

(1). First we integrate the function along lines perpendicular to ξξξ, this gives us a function
of the affine parameter alone.

(2). Compute the 1-dimensional Fourier transform of this function of the affine param-
eter.

To understand this better we consider an example. Let e1 = (1, 0) and e2 = (0, 1) and
(t,ωωω) = (x, e1). Since ê1 = e2, the Radon transform at (x, e1) is given by

Rf(x, e1) =

∞∫

−∞

f(xe1 + ye2)dy

=

∞∫

−∞

f(x, y)dy.

The Fourier transform of Rf(x, e1) is

∞∫

−∞

Rf(x, e1)e
−irxdx =

∞∫

−∞

∞∫

−∞

f(x, y)e−irxdydx.

As 〈re1, (x, y)〉 = rx this is the definition of f̂(re1).

The operations in the central slice theorem are depicted in figure 6.1. On the left we
have a function, f of 2-variables depicted as slices along lines in a family, {〈x,ωωω〉 = t}.
Beyond the graph of f, the integrals of these functions of a single variable are plotted.
This, of course, is just the Radon transform Rf(t,ωωω). To the right and below are the real
and imaginary parts of the Fourier transform, in t, of Rf(t,ωωω).

To simplify the formulæ which follow, we introduce notation for the 1-dimensional
Fourier transform, in the affine parameter, of a function h(t,ωωω) defined on R× S1 :

h̃(r,ωωω)
d
=

∞∫

−∞

h(t,ωωω)e−itrdt. (6.13)

If h(t,ωωω) belongs to L2(R) for a fixed ωωω then the one dimensional Parseval formula implies
that

∞∫

−∞

|h(t,ωωω)|2dt = 1

2π

∞∫

−∞

|h̃(r,ωωω)|2dr. (6.14)
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Figure 6.1: According to the Central Slice Theorem the 2d-Fourier transform, f̂(rωωω) is the
1d-Fourier transform of Rf(t,ωωω).

The Parseval formula for the 2d-Fourier transform and the central slice theorem give a
Parseval formula for the Radon transform.

Theorem 6.2.2 (Parseval Formula for the Radon Transform). Suppose that f is in
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the natural domain of the Radon transform and is square integrable then

∫

R2

|f(x)|2dx =
1

[2π]2

π∫

0

∞∫

−∞

|R̃f(r,ωωω)|2|r|drdωωω. (6.15)

Proof. We begin by assuming that f is also absolutely integrable. The central slice theorem applies
to show that

∫

R2

|f(x)|2dx = 1

[2π]2

2π∫

0

∞∫

0

|f̂(rωωω)|2rdrdωωω

=
1

[2π]2

π∫

0

∞∫

−∞

|R̃f(r,ωωω)|2|r|drdωωω.

(6.16)

In the last line we use the fact that the evenness of Rf implies that

R̃f(r,ωωω) = R̃f(−r,−ωωω). (6.17)

This proves (6.15) with the additional assumption. To remove this assumption we need to ap-
proximate f by absolutely integrable functions. Let ϕ be a non-negative, infinitely differentiable,
radial function with support in the disk of radius 1 with total integral one. As usual, for ε > 0 set
ϕε(x) = ε−2ϕ(ε−1x). A smooth function with bounded support approximating f is given by

fε =
[
χ[0,ε−1](r)f

]
∗ ϕε (6.18)

For ε > 0 these functions satisfy the hypotheses of both Theorem 6.2.2 and the central slice theorem;
the argument above therefore applies to fε. The proof is completed by showing that

1

[2π]2

π∫

0

∞∫

−∞

|R̃f(r,ωωω)|2|r|drdωωω = lim
ε↓0

1

[2π]2

π∫

0

∞∫

−∞

|R̃fε(r,ωωω)|2|r|drdωωω, (6.19)

and that, as ε goes to 0, fε converges in L2(R2) to f. These claims are left as exercises for the
reader.

Remark 6.2.1. ∗ Formula (6.15) has two interesting consequences for the map f 7→ Rf as
a map between L2-spaces. It shows that R does not have an extension as a continuous
mapping from L2(R2) to L2(R× S1) and that R−1 also cannot be a continuous map from
L2(R × S1) to L2(R2). These assertions follow from Corollary A.6.1 and the observation
that

‖h‖2L2(R×S1) =
1

2π

2π∫

0

∞∫

−∞

|h̃(r,ωωω)|2drdωωω.

Because |r| varies between zero and infinity in (6.15) we see that there cannot exist constants
M or M ′ so that either estimate,

‖Rf‖L2(R×S1) ≤M‖f‖L2(R2) or ‖Rf‖L2(R×S1) ≥M ′‖f‖L2(R2)

is valid for f in a dense subset of L2(R2).
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To express the Parseval formula as an integral over the space of oriented lines we define
a “half derivative” operator

D 1
2
Rf(t,ωωω) =

1

2π

∞∫

−∞

R̃f(r,ωωω)|r| 12 eirtdr.

The Parseval formula can then be re-written
∫

R2

|f |2dxdy =
1

2π

π∫

0

∞∫

−∞

|D 1
2
Rf(t,ωωω)|2dtdωωω. (6.20)

This implies that in order for a function on the space of lines to be the Radon transform of
a square integrable function it must have a “half-derivative” in the affine parameter. Unlike
the Fourier transform, the Radon transform is not defined on all of L2(R2).

Exercises

Exercise 6.2.1. If f ∈ L2(R2) and fε is defined in (6.18) show that LIM
ε↓0

fε = f. Hint: Use

Proposition 5.2.2 to handle the convolution. Do not forget the χ[0,ε−1]-term!

Exercise 6.2.2. If f is in the natural domain of Rand fε is defined in (6.18) prove (6.19).
Hint: Use Proposition 6.1.1 and the Plancherel formula.

6.2.2 The Radon Inversion Formula

The central slice theorem and the inversion formula for the Fourier transform, (4.79) give
an inversion formula for the Radon transform.

Theorem 6.2.3 (Radon inversion formula). If f is an absolutely integrable function

in the natural domain of the Radon transform and f̂ is absolutely integrable then

f(x) =
1

[2π]2

π∫

0

∞∫

−∞

eir〈x,ωωω〉R̃f(r,ωωω)|r|drdωωω (6.21)

Proof. Because Rf is an even function, it follows that its Fourier transform satisfies

R̃f(t,ωωω) = R̃f(−t,−ωωω). (6.22)

As f and f̂ are absolutely integrable Theorem 4.5.1 applies to show that

f(x) =
1

[2π]2

∫

R2

f̂(ξξξ)ei〈x,ξξξ〉dξξξ.

Re-expressing the Fourier inversion formula using polar coordinates gives

f(x) =
1

[2π]2

∫

R2

ei〈x,ξξξ〉f̂(ξξξ)dξξξ

=
1

[2π]2

2π∫

0

∞∫

0

eir〈x,ωωω〉f̂(rωωω)rdrdωωω

=
1

[2π]2

2π∫

0

∞∫

0

eir〈x,ωωω〉R̃f(rωωω)rdrdωωω
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The central slice theorem is used in the last line. Using the relation (6.22) we can re-write this as

f(x, y) =
1

[2π]2

π∫

0

∞∫

−∞

eir〈(x,y),ωωω〉R̃f(r,ωωω)|r|drdωωω. (6.23)

Remark 6.2.2. As was the case with the Fourier transform, the inversion formula for the
Radon transform holds under weaker hypotheses than those stated in Theorem 6.2.3. Under
these hypotheses all the integrals involved are absolutely convergent and therefore do not
require any further interpretation. In imaging applications the data are usually piecewise
continuous, vanishing outside a bounded set. As we know from our study of the Fourier
transform, this does not imply that f̂ is absolutely integrable and so the Fourier inversion
formula requires a careful interpretation in this case. Such data are square integrable and
therefore it follows from the results in section 4.5.3 that

f = LIM
ρ→∞

1

[2π]2

π∫

0

ρ∫

−ρ

eir〈x,ωωω〉R̃f(r,ωωω)|r|drdωωω. (6.24)

In most cases of interest, at a point x, where f is continuous, the integral

1

[2π]2

∞∫

−∞

π∫

0

eir〈x,ωωω〉R̃f(r,ωωω)|r|dωωωdr

exists as an improper Riemann integrals and equals f(x). Additional care is required in
manipulating these expressions.

Remark 6.2.3. Formula (6.21) allows the determination of f from its Radon transform.
This formula completes a highly idealized, mathematical model for X-ray CT-imaging:

• We consider a two-dimensional slice of a three-dimensional object, the physical param-
eter of interest is the attenuation coefficient f of the two dimensional slice. According
to Beer’s law, the intensity I(t,ωωω) of X-rays (of a given energy) traveling along a line,
lt,ωωω is attenuated according the differential equation:

dI(t,ωωω)

ds
= −fI(t,ωωω).

Here s is arclength along the line.

• By comparing the intensity of an incident beam of X-rays to that emitted we “mea-
sure” the Radon transform of f

Rf(t,ωωω) = − log

[
Io,(t,ωωω)

Ii,(t,ωωω)

]
.

• Using formula (6.21) the attenuation coefficient f is reconstructed from the measure-
ments Rf.

The most obvious flaw in this model is that, in practice Rf(t,ωωω) can only be measured for
a finite set of pairs (t,ωωω). Nonetheless formula (6.21) provides a good starting point for the
development of more practical algorithms.
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6.2.3 Filtered Back-projection

The inversion formula for the Radon transform can be understood as a two step process:

(1). The radial integral is interpreted as a filter applied to the Radon transform. The
filter acts only in the affine parameter, the output of the filter is denoted by

G Rf(t,ωωω) =
1

2π

∞∫

−∞

R̃f(r,ωωω)eirt|r|dr. (6.25)

(2). The angular integral is then interpreted as the back-projection of the filtered Radon
transform. The function f is expressed as

f(x, y) =
1

2π

π∫

0

(G R)f(〈(x, y),ωωω〉,ωωω)dωωω. (6.26)

For this reason the Radon inversion formula is often called the filtered back-projection
formula.

Back-projection is both conceptually and computationally simple, whereas the filtering
step requires a more careful analysis. If we were to omit the |r| factor then it would follow

from the 1-dimensional Fourier inversion formula applied to R̃f that f would be given by

f(x) =
1

[2π]2

π∫

0

∞∫

−∞

eir〈x,ωωω〉f̂(rωωω)drdωωω

=
1

2π

π∫

0

Rf(〈x,ωωω〉,ωωω)dωωω

Note that the line in the family {lt,ωωω | t ∈ (−∞,∞)} passing through the point x is the one
with affine parameter t = 〈x,ωωω〉. The value at x obtained this way is half the average of the
Radon transform of f over all lines passing through this point. This is the back-projection
formula introduced in section 3.4.2. By comparison with the true inversion formula (6.21)
it is now clear why the back-projection formula cannot be correct. In the true formula the
low frequency components are suppressed by |r| whereas the high frequency components
are amplified.

The actual filter is comprised of two operations. Recall that the Fourier transform
of the derivative of a function g is equal to the Fourier transform of g multiplied by iξ:

∂̂tg(ξ) = (iξ)ĝ(ξ). If, in the inversion formula (6.21), we had r instead of |r| then the formula
would give

1

2πi

π∫

0

∂tRf(〈(x, y),ωωω〉,ωωω)dωωω;

This is the back-projection of the t-derivative of Rf. If f is real valued then this function is
purely imaginary! Because differentiation is a local operation this is a relatively easy formula
to understand. The subtlety in (6.21) therefore stems from the fact that |r| appears and
not r itself.
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To account for the difference between r and |r| we define another operation on functions
of a single variable which is called the Hilbert transform. The signum function is defined
by

sgn(r) =

{
1 if r > 0,

−1 if r ≤ 0.

Definition 6.2.1. Suppose that g is an L2-function defined on R, the Hilbert transform of
g is defined by

Hg = F−1(sgn ĝ).

If ĝ is also absolutely integrable then

Hg(t) = 1

2π

∞∫

−∞

ĝ(r) sgn(r)eitrdr. (6.27)

The Hilbert transform of g is the function whose Fourier transform is sgn ĝ. For any
given point t0, the computation of Hg(t0) requires a knowledge of g(t) for all values of
t. Unlike differentiation, the Hilbert transform is not a local operation. Conceptually, the
Hilbert transform is the most difficult part of the Radon inversion formula. On the other
hand, because the Hilbert transform has a very simple expression in terms of the Fourier
transform it is easy to efficiently implement.

We compute a couple of examples of Hilbert transforms.

Example 6.2.1. Let

f(x) =
sin(x)

πx
,

its Fourier transform is

f̂(ξ) = χ[−1,1](ξ) =

{
1 if |ξ| ≤ 1,

0 if |ξ| > 1.

The Hilbert transform of f is expressed as a Fourier integral by

H
(
sin(x)

πx

)
=

1

2π




1∫

0

eixξdx−
0∫

−1

eixξdx




=i
1− cos(x)

πx
.

(6.28)

This pair of functions is graphed in figure 6.2(a).

Example 6.2.2. The next example is of interest in medical imaging. It is difficult to do
this example by a direct calculation. A method to do this calculation, using functions of a
complex variable is explained in the final section of this chapter. Let

f(x) =

{√
1− x2 for |x| < 1,

0 for |x| ≥ 1.
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The Hilbert transform of f is given by

H (f) =





ix for |x| < 1,

i(x+
√
x2 − 1) for x < −1,

i(x−
√
x2 − 1) for x > 1.

(6.29)

Notice the very different character of Hf(x) for |x| < 1 and |x| > 1. For |x| < 1, Hf(x) is
a smooth function with a bounded derivative. Approaching ±1 from the set |x| > 1, the
derivative of Hf(x) blows up. This pair of functions is graphed in figure 6.2(b).
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Figure 6.2: Hilbert transform pairs.

From the differentiation formula for the Fourier transform we conclude that

∂̃tRf(r) = irR̃f(r).

The Hilbert transform of ∂tRf is given by

H(∂tRf)(t,ωωω) =
1

2π

∞∫

−∞

∂̃tRf(r,ωωω) sgn(r)e
itrdr

=
1

2π

∞∫

−∞

i|r|R̃f(r,ωωω)eirtdr.
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Since sgn(r)r = |r| we can identify the filtration step in (6.26):

G Rf(t,ωωω) =
1

i
H(∂tRf)(t,ωωω); (6.30)

putting this into (6.26) we obtain

f(x) =
1

2πi

π∫

0

H(∂tRf)(〈x,ωωω〉,ωωω)dωωω. (6.31)

The function f is reconstructed by backprojecting the Hilbert transform of 1
i ∂tRf.

Remark 6.2.4. The Fourier transform of the function

F =
1

2
(f +Hf)

vanishes for ξ < 0 and therefore F has an analytic extension to the upper half plane,
see Theorem 4.4.4. This explains why the Hilbert transform is intimately connected to
the theory of analytic functions. Using the Fourier representation, it is easy to see that
F̂ (ξ) = χ[0,∞)(ξ)f̂(ξ) and therefore, if y > 0 then

F (x+ iy) =
1

2π

∞∫

0

f̂(ξ)e−yξeixξdξ

is an absolutely convergent integral. The function F (x) is the boundary value of a analytic
function. A basic theorem in function theory states that an analytic function cannot vanish
on an open interval, see [52]. This shows that if f has bounded support then Hf cannot.
For more on the connection between the Hilbert transform and analytic function theory see
section 6.8.

This observation has important implications in image reconstruction. Formula (6.31)
expresses f as the back-projection of −iH∂tRf. If f has bounded support then so does
∂tRf and therefore −iH∂tRf does not. If x lies outside the support of f, then this means
that the integrand in (6.31) is, generally speaking, not zero. The integral vanishes due to
subtle cancelations between the positive and negative parts of −iH(∂tRf)(〈x,ωωω〉,ωωω). We
return to this question in section 10.6.3.

Exercises

Exercise 6.2.3. Suppose that f is a differentiable function with bounded supported. Show
that H(∂tf) = ∂t(Hf).

Exercise 6.2.4. ∗ Use the previous exercise and a limiting argument to show thatH(∂tf) =
∂t(Hf) functions in L2(R) which have an L2-derivative.

Exercise 6.2.5. ∗ Use the Schwarz reflection principle to prove the statement that if
F (x+ iy) is an analytic function in y > 0 such that, for a < x < b,

lim
y↓0

F (x+ iy) = 0

then F ≡ 0.
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6.2.4 Inverting the Radon transform, two examples

Before continuing our analysis of R−1 we compute the inverse of the Radon transform in
two examples.

Example 6.2.3. In the first example f = χD1 , characteristic function on the unit disk. Using
the rotational symmetry, we check that

Rf(t,ωωω) =

{
2
√
1− t2 |t| ≤ 1

0 |t| > 1.
(6.32)

Note that Rf satisfies

lim sup
h,t

∣∣∣∣
Rf(t+ h)− Rf(t)√

|h|

∣∣∣∣ <∞.

In other words Rf is a Hölder- 1
2 function of t.

To apply the filtered back-projection formula we need to compute either ∂tHRf or
H∂tRf. It is instructive to do both. In section 6.8 it is shown that

1

i
HRf(t,ωωω) =





2t for |t| < 1,

2(t+
√
t2 − 1) for t < −1,

2(t−
√
t2 − 1) for t > 1.

(6.33)

Even though this function is not differentiable at t = ±1, it does have an absolutely
integrable, weak derivative given by

1

i
∂tHRf(t,ωωω) =

{
2− 2|t|√

t2−1
for |t| ≥ 1

2 for |t| < 1.
(6.34)

On the other hand we could first compute the weak derivative of Rf :

∂tRf(t,ωωω) =

{
−2t√
1−t2 |t| < 1

0 |t| > 1.

Unfortunately this function does not belong to L2(R). Thus far we have only defined the
Hilbert transform for L2-functions. It is also possible to define the Hilbert transform of a
function in Lp(R) for any 1 < p ≤ 2, see [40]. As

∫
|∂tRf |p <∞ for p < 2

the Hilbert transform of ∂tRf is still defined and can be computed using the complex
variable method described in section 6.8. It is given by the formula

1

i
H(∂tRf)(t) =

{
2− 2|t|√

t2−1
for |t| ≥ 1

2 for |t| < 1.
(6.35)

Now we do the back-projection step. If x is inside the unit disc then

|〈x,ωωω〉| ≤ 1.
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At such points, the inverse of the Radon transform is quite easy to compute:

1

2πi

π∫

0

H(∂tRf)(〈x,ωωω〉,ωωω)dωωω =
1

2π

π∫

0

2dωωω = 1.

This is precisely the value of f for ‖x‖ ≤ 1. On the other hand, if ‖x‖ > 1, then the needed
calculation is more complicated. Since f is radially symmetric it suffices to consider f(x, 0).
If x > 1 then there is an angle 0 < θx <

π
2 so that x cos θx = 1, the inversion formula can

be written

f(x, 0) =
1

2π


4

θx∫

0

dθ − 2

π−θx∫

θx

(
1− |x cos θ|√

x2 cos2 θ − 1

)
dθ


 .

This is a much more complicated formula. From the point of view of computation it is
notable that the Radon inversion formula now involves an divergent integrand. It is of
course absolutely integrable, but this divergence leads to significant numerical difficulties.

The important lesson of this example is the qualitative difference in the filtered back-
projection formula between points inside and outside the unit disk. This fact has significant
consequences in medical imaging, see section 10.6.3.

Example 6.2.4. Our next example is a bit smoother than the characteristic function of the
disk. Let r =

√
x2 + y2 and define g by

g(x, y) =

{
1− r2 |r| < 1,

0 |r| ≥ 1.

Again using the rotational symmetry, we obtain

Rg(t,ωωω) =

{
4
3(1− t2)3/2 |t| ≤ 1,

0 |t| > 1.

This function Rg is classically differentiable, the derivative of Rg is

∂tRg(t,ωωω) =

{
−4t(1− t2)1/2 |t| ≤ 1,

0 |t| > 1.

It satisfies

lim sup
h,t

∣∣∣∣
∂tRg(t+ h)− ∂tRg(t)

|h| 12

∣∣∣∣ <∞.

This time ∂tRg is a Hölder- 1
2 function. This is a “half” a derivative smoother than g itself.

It is a general fact that the Radon transform has better regularity in the affine parameter
than the original function by half a derivative. The Hilbert transform of ∂tRg is

1

i
H(∂tRg)(t) =

{
2− 4t2 |t| ≤ 1,

4[ 4|t|(t2 − 1)1/2 − (2t2 − 1) ] |t| > 1.

Once again we see that the back-projection formula for points inside the unit disk is,
numerically a bit simpler than for points outside. While

√
t2 − 1 is continuous, it is not

differentiable at t = ±1. This makes the numerical integration in the back-projection step
more difficult for points outside the disk.
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Exercises

Exercise 6.2.6. Prove that (6.34) gives the weak derivative of HRf defined in (6.33).

Exercise 6.2.7. Use Simpson’s rule to numerically integrate
√
1− t2 from 0 to 1.Determine

how the accuracy of the result depends on the mesh size and compare it to the accuracy
when instead, 1− t2 is integrated.

Exercise 6.2.8. ∗ Give an algorithm to numerically integrate the function 1√
1−t2 from −1

to 1. Provide an estimate for the accuracy of your method.

Exercise 6.2.9. ∗ Generalize the method in the previous exercise to functions of the form
f√

1−t2 where f is differentiable on an interval containing [−1, 1].

6.2.5 Back-projection∗

See: A.2.5.

The operation of back-projection has a nice mathematical interpretation. If (X, 〈·, ·〉X)
and (Y, 〈·, ·〉Y ) are inner product spaces and A : X → Y is a linear map recall that the
adjoint of A, A∗ : Y → X is defined by the relations

〈Ax,y〉Y = 〈x, A∗y〉Y for all x ∈ X and y ∈ Y.

If we use the L2-inner product for functions on R2 and the inner product for functions on
R× S1 compatible with the L2-norm defined in (6.1),

〈h, k〉R×S1 =

2π∫

0

∞∫

−∞

h(t,ωωω)k(t,ωωω)dtdωωω

then back-projection is [4π]−1 times the formal adjoint of the Radon transform. It is only
a formal adjoint because, as noted above, the Radon transform does not extend to define a
continuous map from L2(R2) to L2(R×S1). The proof is a simple calculation; for the sake
of simplicity assume that f is a function of bounded support on R2 and h is a function of
bounded support on R× S1:

〈Rf, h〉R×S1 =

2π∫

0

∞∫

−∞

Rf(t,ωωω)h(t,ωωω)dtdωωω

=

2π∫

0

∞∫

−∞

∞∫

−∞

f(tωωω + sω̂̂ω̂ω)h(t,ωωω)dsdtdωωω

(6.36)

Let x = tωωω + sω̂̂ω̂ω so that

t = 〈x,ωωω〉,
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interchanging the ωωω- and the x-integrals we obtain

〈Rf, h〉R×S1 =

∫

R2

2π∫

0

f(x)h(〈x,ωωω〉,ωωω)dωωωdx

= 〈f,R∗h〉R2 .

(6.37)

This verifies the assertion that back-projection is [4π]−1 times the formal adjoint of the
Radon transform. The fact that R∗ 6= R−1 is reflection of the fact that R is not a unitary
transformation from L2(R2) to L2(R× S1).

Using the identification of back-projection with the adjoint, along with the Parseval

formula, (4.5.2) we can derive an interesting relationship between R̂∗Rf and f̂ .

Proposition 6.2.1. Suppose that f is an absolutely integrable and square integrable func-
tion in the natural domain of the Radon transform then

r

4π
R̂∗Rf(rωωω) = f̂(rωωω). (6.38)

Proof. The proof of this proposition uses the basic principle that, in an inner product space,
(X, 〈·, ·〉X), an element x is zero if and only if 〈x,y〉 = 0 for all y belonging to a dense subset
of X. Let f and g be two functions satisfying the hypotheses of the proposition. From the definition
of the adjoint it follows that

〈Rf,Rg〉R×S1 = 〈f,R∗Rg〉R2 . (6.39)

Using the Parseval formula we get the relations

〈f,R∗Rg〉R2 =
1

[2π]2
〈f̂ , R̂∗Rg〉R2

=
1

[2π]2

2π∫

0

∞∫

0

f̂(rωωω)R̂∗Rg(rωωω)rdrdωωω,

(6.40)

and

〈Rf,Rg〉R×S1 =
1

2π

2π∫

0

∞∫

−∞

R̃f(r,ωωω)R̃g(r,ωωω)drdωωω

=
1

π

2π∫

0

∞∫

0

f̂(rωωω)ĝ(rωωω)drdωωω.

(6.41)

In the last line we use the central slice theorem and the evenness of the Radon transform. Since
these formulæ hold for all f and g with bounded support, a dense subset of L2, it follows that

r

4π
R̂∗Rg(rωωω) = ĝ(rωωω). (6.42)

Proposition 6.2.1 leads to an alternate formula for R−1. In this approach, the back-
projection is done first. Then a filter is applied to the function R∗Rf which is defined on
R2. If f is a piecewise continuous function of bounded support then Proposition 6.2.1 states
that

f̂(rωωω) =
r

4π
R̂∗Rf(rωωω).
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If f̂ is absolutely integrable then the Fourier inversion formula therefore implies that

f(x) =
1

[2π]2

2π∫

0

∞∫

0

r

4π
R̂∗Rf(rωωω)ei〈rωωω,x〉rdrdωωω

=
1

[2π]2

∫

R2

‖ξξξ‖
4π

R̂∗Rf(ξξξ)ei〈ξξξ,(x,y)〉dξξξ.

(6.43)

The Laplace operator on R2 is defined as the second order differential operator

∆f = −(∂2
xf + ∂2

yf).

As a constant coefficient differential operator it can be expressed in terms of the Fourier
transform by

∆f(x) =
1

[2π]2

∫

R2

‖ξξξ‖2f̂(ξξξ)ei〈ξξξ,x〉dξξξ.

This formula motivates a definition for the non-negative powers of the Laplace operator.
For s ≥ 0 and f, a smooth function with bounded support define

∆sf(x) =
1

[2π]2

∫

R2

‖ξξξ‖2sf̂(ξξξ)ei〈ξξξ,x〉dξξξ. (6.44)

Using the Parseval formula this operation can be extended to all functions in L2(R2) such

that ‖ξξξ‖sf̂(ξξξ) is square integrable. With this definition for ∆s we can re-write (6.43) as

4πf(x) = [∆
1
2 R∗(Rf)](x). (6.45)

Remark 6.2.5. Note that ∆R∗(Rf) = 4π∆
1
2 f. This gives an expression for ∆

1
2 f which,

given Rf, can be computed using entirely elementary operations, i.e. back-projection and

differentiation. The functions f and ∆
1
2 f have the same singularities. As edges are discon-

tinuities, this formula gives a straightforward way to find the edges in an image described
by a density function f. I thank Gunther Uhlmann for this observation.

Remark 6.2.6. Thus far we have produced a left inverse for the Radon transform. If f is
a function in the plane satisfying appropriate regularity and decay hypotheses then, for
example,

f = (∆
1
2 R∗)Rf.

We have not said that if h is an even function on R× S1 then

h = R(∆
1
2 R∗)h.

That is we have not shown that (∆
1
2 R∗) is also a right inverse for R. Under some mild

hypotheses on h this is in fact true. The proof of this statement involves characterizing
the range of the Radon transform and is beyond the scope of this book. Treatments of this
problem can found in [48], [44] and [50].

Exercises
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Exercise 6.2.10. Let g be a continuous function with bounded support on R× S1. Show
that there is a constant C so that

|R∗g(x)| ≤ C

1 + ‖x‖ .

Show that if g is a non-negative function which is not identically zero then there is also a
constant C ′ > 0 so that

|R∗g(x)| ≥ C ′

1 + ‖x‖ .

Exercise 6.2.11. Explain how we arrived at the limits of integration in the second line
of (6.41).

Exercise 6.2.12. Using the definition, (6.44) show that

(1). If s is a positive integer then the two definitions of ∆s agree.

(2). For s and t non-negative numbers, show that

∆s∆t = ∆s+t. (6.46)

(3). Conclude from the previous part that

∆R∗Rf = ∆
1
2 f.

6.3 The Hilbert transform

See: A.5.6, A.6.

To implement the inversion formula for the Radon transform one needs to perform the
filter operation, in this section we further analyze the Hilbert transform. As above, F−1

denotes the inverse of the Fourier transform. The Hilbert transform is defined by

Hf = F−1(f̂(ξ) sgn(ξ))⇒ Ĥf(ξ) = sgn(ξ)f̂(ξ).

In general the Fourier transform of a convolution is the product of their Fourier transforms,
that is

F−1(f̂ ĝ) = f ∗ g.

Hence, if there existed a nice function h such that ĥ(ξ) = sgn(ξ), then the Hilbert transform
would be just h ∗ f. Unfortunately the signum function is not the Fourier transform of a
nice function because it does not go to zero, in any sense, as |ξ| → ∞. Approximating
sgn(ξ) by a function which decays at infinity gives approximations to the Hilbert transform
expressible as convolutions with nice functions.

Modify the signum function by setting

ĥε(ξ) := sgn(ξ)e−ε|ξ| for ε > 0.
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The inverse Fourier transform of ĥε is

hε =
i

π

t

t2 + ε2
.

This function behaves like 1/t as t goes to infinity which is not fast enough for integrability
but at least it goes to zero and has no singularities. Most of the functions encountered in
medical imaging have bounded support and therefore the integrals hε∗f converge absolutely.
For each ε > 0 define an approximate Hilbert transform

Hεf = F−1(f̂ ĥε) = f ∗ hε.

Letting ε go to 0 we see that hε converges pointwise to i[tπ]−1. Formally this seems to
imply that

Hf(t) = i

π

∞∫

−∞

f(s)ds

t− s .

Because 1/|t| is not integrable in any neighborhood of 0, this expression is not an absolutely
convergent integral. In this instance, the correct interpretation for this formula is as a
Cauchy Principal Value:

Hf(t) = i

π
P.V.(f ∗ 1

t
) =

i

π
lim
ε→0



−ε∫

−∞

+

∞∫

ε

f(t− s)
s

ds


 . (6.47)

This limit is finite, at least if f has bounded support and is once differentiable. Since the
function 1/s is odd and the interval on which we are integrating is symmetric, we have

( −ε∫

−R

+

R∫

ε

)
ds

s
= 0.

We can multiply this by f(t) and still get zero:

( −ε∫

−R

+

R∫

ε

)
f(t)

ds

s
= 0.

If we assume that the support of f(t) is contained in [−R
2 ,

R
2 ] then subtracting this from

the above integral we obtain

Hf(t) = i

π
lim
ε→0

( −ε∫

−R

+

R∫

ε

)
f(t− s)− f(t)

s
ds. (6.48)

If f is once differentiable then the integrand in (6.48) remains bounded as ε goes to 0.
If, for some α > 0, f satisfies the α-Hölder-condition,

|f(t)− f(s)|
|t− s|α ≤M, (6.49)
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then Hf is given by the absolutely convergent integral

Hf(t) = i

π

R∫

−R

f(t− s)− f(t)
s

ds. (6.50)

By this process, we have replaced the limit in (6.47) by an absolutely convergent integral.
The cancelation due to the symmetric interval used in the definition of the principal value
is critical to obtain this result.

There are other ways to regularize convolution with 1/t. For example, we could add an
imaginary number to the denominator to make it non-vanishing,

lim
ε↓0

i

π

R∫

−R

f(t− s)
s± iε ds.

A computation shows that

i

π

1

2

(
1

s+ iε
+

1

s− iε

)
=
i

π

s

s2 + ε2
= hε(s).

This shows that the average of the two regularizations, (s ± iε)−1 results in the same
approximation as before. The difference of these two regularizations is

i

π
· 1
2

(
1

s+ iε
− 1

s− iε

)
=

1

π

ε

s2 + ε2

which does not tend to zero as ε tends to zero. As an example we “test” the characteristic
function of the interval χ[−1,1] by evaluating the limit at t = 0,

lim
ε↓0

∞∫

−∞

χ[−1,1](−s)
ε

s2 + ε2
ds = lim

ε↓0

1∫

−1

ε

s2 + ε2
ds = lim

ε↓0

1/ε∫

−1/ε

dt

t2 + 1
= π.

So we see that in general

lim
ε↓0

i

π

∞∫

−∞

f(t− s)ds
s± iε 6= Hf(t).

The lesson is that care must be exercised in choosing a regularization for convolution with
1/t. Different regularizations lead to different results.

Things are less delicate using the Fourier representation.

Theorem 6.3.1. Suppose that φε(ξ) is a uniformly bounded family of functions which

converges pointwise to sgn(ξ) as ε → 0. If f and f̂ are square integrable then the Hilbert
transform of f is given by the limit

Hf(t) = LIM
ε↓0

F−1(φεf̂).
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Proof. The Parseval formula shows that

‖Hf −F−1(φεf)‖L2 =
1

2π

∞∫

−∞

|(sgn(ξ)− φε(ξ))f̂(ξ)|2tdξ.

As φε is uniformly bounded and converges to sgn, the conclusion follows from the Lebesgue domi-
nated convergence theorem.

Remark 6.3.1. If f is sufficiently smooth, so that f̂ decays then Hf(t) is given by the
pointwise limit

Hf(t) = lim
ε↓0

∞∫

−∞

φε(ξ)f̂(ξ)e
itξ dξ

2π
.

The function ĥε satisfies the hypotheses of the theorem. Another important example of
a regularization is given by φε defined by

φε(ξ) =





−1 −ε−1 ≤ ξ ≤ 0,

1 0 < ξ ≤ ε−1,

0 otherwise.

Computing the inverse Fourier transform of φε we obtain a different sequence of kernels
which approximately compute the Hilbert transform.

F−1(φε) =
cos(ε−1x)− 1

πx
.

Remark 6.3.2. This discussion shows that there are several different philosophies for ap-
proximating the Hilbert transform and therefore the Radon inversion formula. On the one
hand we can use the convolution formula forH and directly approximate P.V.(f∗ 1

t ). On the
other hand we can use the Fourier integral representation and instead approximate sgn(ξ)
as described in Theorem 6.3.1. For sufficiently smooth functions with bounded support we
could use (6.50). Mathematically these approaches are equivalent; computationally they
can lead to vastly different results. In most real applications the Fourier representation is
used because it is more efficient and does not involve regularizing a divergent expression.
Instead an integral over R is replaced by an integral over a finite interval.

Exercises

Exercise 6.3.1. Suppose that f and g are continuous functions with bounded support.
Show that

H(f ∗ g) = (Hf) ∗ g = f ∗ (Hg).

Exercise 6.3.2. Ordinarily one might not want to use an approximation like F−1(φL)
because φL has discontinuities at ±L. Why is this less of an issue for this case?

Exercise 6.3.3. Suppose that f has bounded support and satisfies an α-Hölder condition
for an 0 < α ≤ 1. Show that

lim
ε↓0

hε ∗ f =
i

π
P.V.(f ∗ 1

t
).
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Exercise 6.3.4. Below are linear operators defined in terms of the Fourier transform. Re-
express these operators in terms of differentiations and the Hilbert transform. For example,
if Af is defined by

Af(x) =
1

2π

∞∫

−∞

ξf̂(ξ)eixξdξ

then the answer to this question is

Af(x) = −i∂xf(x).

Do not worry about convergence.

(1).

A1f(x) =
1

2π

∞∫

−∞

|ξ|3f̂(ξ)eixξdξ

(2).

A2f(x) =
1

2π

∞∫

−∞

(ξ4 + |ξ|+ 1)f̂(ξ)eixξdξ

(3). In this problem take note of the lower limit of integration.

A3f(x) =
1

2π

∞∫

0

f̂(ξ)eixξdξ

Exercise 6.3.5. If f ∈ L2(R) then show that

∞∫

−∞

|f(x)|2dx =

∞∫

−∞

|Hf(x)|2dx.

Exercise 6.3.6. This exercise addresses the “spectral theory” of the Hilbert transform.

(1). Which real numbers are eigenvalues of the Hilbert transform? That is, for which
real numbers λ does there exist a function fλ in L2(R) so that

Hf = λf?

Hint: Use the Fourier transform.

(2). Can you describe the eigenspaces? That is if λ is an eigenvalue of H describe the
set of all functions in L2(R) which satisfy

Hf = λf.

(3). Show that H ◦Hf = H(H(f)) = f for any f ∈ L2(R).
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6.3.1 Mapping properties of the Hilbert transform∗

See: A.5.1.

The Hilbert transform has very good mapping properties with respect to most function
spaces. Using the Parseval formula one easily establishes the L2-result.

Proposition 6.3.1. If f ∈ L2(R) then Hf ∈ L2(R) and in fact

‖f‖L2 = ‖Hf‖L2 .

The Hilbert transform also has good mapping properties on other Lp-spaces as well as
Hölder spaces, though the proofs of these results requires more advanced techniques.

Proposition 6.3.2. For each 1 < p <∞ the Hilbert transform extends to define a bounded
map H : Lp(R)→ Lp(R).

Proposition 6.3.3. Suppose that f is α-Hölder continuous for an α ∈ (0, 1) and vanishes
outside a bounded interval then Hf is also α-Hölder continuous.

Notice that the case of α = 1 is excluded in this proposition. The result is false in this
case. There exist differentiable functions f such that Hf is not even 1-Hölder continuous.
Proofs of these propositions can be found in [66].

Exercise 6.3.7. By using formula (6.50), which is valid for a Hölder continuous function
vanishing outside a bounded interval, prove Proposition 6.3.3.

6.4 Approximate inverses for the Radon transform

To exactly invert the Radon transform we need to compute the Hilbert transform of a
derivative. The measured data is a function, gm on the space of lines. Measured data is
rarely differentiable and the exact Radon inverse entails the computation of ∂tgm. Indeed
the Parseval formula, (6.15) implies that unless gm has a half an L2-derivative then it is
not the Radon transform of an L2-function. Thus it is important to investigate how to
approximate the inverse of the Radon transform in a way that is usable with realistic data.
The various approaches to approximating the Hilbert transform lead to different approaches
to approximating the Radon inverse. Because the approximate inverses involve some sort
of smoothing, they are often called regularized inverses.

Recall that a convolution has the following useful properties with respect to derivatives:

∂x(f ∗ g) = ∂xf ∗ g = f ∗ ∂xg.

Using formula (6.31) we get an approximate inverse for the Radon transform

f(x) ≈ 1

2πi

π∫

0

Hε(∂tRf)(〈x,ωωω〉,ωωω)dωωω

=
1

2πi

π∫

0

hε ∗ (∂tRf)(〈x,ωωω〉,ωωω)dωωω

(6.51)
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Using the formula for hε and the fact that f ∗ ∂tg = ∂tf ∗ g we get

f(x) ≈ 1

2πi

π∫

0

∞∫

−∞

Rf(s,ωωω)∂thε(〈x,ωωω〉 − s)ds

=
1

2π2

π∫

0

∞∫

−∞

[
Rf(s,ωωω)

ε2 − (t− s)2
(ε2 + (t− s)2)2 ds

∣∣∣∣
t=〈x,ωωω〉

]
dωωω.

(6.52)

The expression in (6.52) has an important practical advantage: we have moved the t-
derivative from the potentially noisy measurement Rf over to the smooth, exactly known
function hε. This means that we do not have to approximate the derivatives of Rf.

In most applications convolution operators, such as derivatives and the Hilbert trans-
form are computed using the Fourier representation. Theorem 6.3.1 suggests approximating
the filtering step, (6.25) in the exact inversion formula by cutting off the high frequency

components. Let ψ̂(r) be a bounded, even function, satisfying the conditions:

ψ̂(0) = 1,

ψ̂(r) = 0 for |r| > W.
(6.53)

For l a function on R× S1 define

Gψ(l)(t,ωωω) =
1

2π

∞∫

−∞

l̃(r,ωωω)eirtψ̂(r)|r|dr, (6.54)

and

R−1
ψ l(x) =

1

2π

π∫

0

Gψ(l)(〈x,ωωω〉,ωωω)dωωω. (6.55)

For notational convenience let
fψ = R−1

ψ ◦ Rf.

How is R−1
ψ f related to f? The answer to this question is surprisingly simple. The

starting point for our analysis is Proposition 6.1.1 which says that if f and g are functions
on R2 then

R(f ∗ g)(t,ωωω) =
∞∫

−∞

Rf(t− τ,ωωω)Rg(τ,ωωω)dτ.

Using the convolution theorem for the Fourier transform we see that

R̃f ∗ g(r,ωωω) = R̃f(r,ωωω)R̃g(r,ωωω).

Suppose now that g is a radial function so that Rg is independent of ωωω. The filtered back-
projection formula for f ∗ g reads

f ∗ g(x) = 1

4π2

π∫

0

∞∫

−∞

R̃f(r,ωωω)R̃g(r)eir〈x,ωωω〉|r|drdωωω. (6.56)
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Comparing (6.56) with the definition of fψ we see that, if we can find a radial function
kψ, defined on R2, so that

R(kψ)(t,ωωω) = ψ(t),

then

fψ(x) = kψ ∗ f(x) (6.57)

The existence of such a function is a consequence of the results in section 3.5. Because
ψ̂ has bounded support, ψ(t) is an infinitely differentiable function, with all derivatives
bounded. To apply Proposition 3.5.1 we need to know that ψ(t) and ψ ′(t) are absolutely

integrable. This translates into a requirement that ψ̂ is sufficiently continuous. In this case,
the function kψ is given by the formula

kψ(ρ) = −
1

π

∞∫

ρ

ψ′(t)dt√
t2 − ρ2

(6.58)

This completes the proof of the following proposition.

Proposition 6.4.1. Suppose that ψ̂ satisfies the conditions in (6.53) and ψ is absolutely
integrable then

fψ(x) = kψ ∗ f(x)

where kψ is given by (6.58).

Remark 6.4.1. Replacing f by fψ produces a somewhat blured image. Increasing the

support of ψ̂ leads, in general to a more sharply peaked ψ and therefore a more sharply
peaked kψ. This reduces the blurring but also reduces the suppression of noise in the data.
This discussion is adapted from [69].

6.4.1 Addendum∗

See: A.4.6.

The analysis in the previous section is unsatisfactory in one particular: we explicitly ex-
clude the possibility that ψ̂W (r) = χ[−W,W ](r). The problem is that ψW (t) = sin(Wt)/(πt)
is not absolutely integrable and so the general inversion result for radial functions does not
apply. In this special case the integral defining kψ is a convergent, improper integral, which
can be computed exactly.

We use the formula
∞∫

1

sin(xt)dt√
t2 − 1

=
π

2
J0(x),

here J0 is a Bessel function, see [49]. Putting this into the inversion formula and using the
fact that J ′0 = −J1 we obtain

kW (x) =
W

2πx
J1(Wx).
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The power series for J1(x) about x = 0 is

J1(x) =
x

2

∞∑

k=0

(−1)kx2k

22kk!(k + 1)!

from which it follows easily that kW (x) is a smooth function of x2. The standard asymptotic
expansion for J1(x) as |x| tends to infinity implies that

|kW (x)| ≤ C

(1 + |x|) 3
2

and therefore the integrals defining RkW converge absolutely. As the Radon transform is
linear, we can extend the result of the previous section to allow functions of the form

ψ̂(r) = χ[−W,W ](r) + ψ̂c(r)

where ψc = F−1ψ̂c satisfies the hypotheses of Proposition 3.5.1. In this case

fψ = (kW + kψc) ∗ f. (6.59)

Exercise

Exercise 6.4.1. Justify the computations for the function ψ̂ = χ[−W,W ] leading up to
formula (6.59).

6.5 The Radon transform on data with bounded support∗

In medical imaging the data under consideration usually has bounded support. The Radon
transform of a function with bounded support satisfies an infinite set of moment conditions.
From the point of view of measurements these can be viewed as consistency conditions.
Mathematically this is a part of the problem of characterizing the range of the Radon
transform on data with bounded support. The general problem of describing the range of
the Radon transform is well beyond the scope of this text. The interested reader is refered
to [44], [48] or [50].

Suppose that f is a function which vanishes outside the disk of radius R. As observed
above this implies that Rf(t,ωωω) = 0 if |t| > R. For a non-negative integer, n consider the
integral,

Mn(f)(ωωω) =

∫

R2

f(x)[〈x,ωωω〉]ndx. (6.60)

If f has bounded support, then these integrals are well defined for any n ∈ N∪{0}. On the
other hand, if f does not vanish outside a disk of finite radius then, for sufficiently large n,
these integral may not make sense.

Changing coordinates with x = tωωω + sω̂̂ω̂ω we can rewrite this integral in terms of Rf ,

Mn(f)(ωωω) =

∫

R2

f(tωωω + sω̂̂ω̂ω)tndsdt

=

∞∫

−∞

Rf(t,ωωω)tndt.

(6.61)
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The function Mn(f)(ωωω) is called the nth moment of the Radon transform of f. If Rf(t,ωωω)
vanishes for |t| > R then this integral is well defined for all n. In example 3.4.7 we showed
that there are functions, which do not have bounded support, for which the Radon trans-
form is defined and vanishes for large enough values of t. If f itself has bounded support
then Mn(f)(ωωω) depends on ωωω in a very special way.

It is useful to express ωωω as a function of the angle θ,

ωωω(θ) = (cos(θ), sin(θ)).

Using the binomial theorem we obtain

〈x,ωωω(θ)〉n = (x cos θ + y sin θ)n

=

n∑

j=0

(
n
j

)
(x cos θ)j(y sin θ)n−j

=
n∑

j=0

(
n
j

)
cosj θ sinn−j θxjyn−j .

Putting the sum into formula (6.60) we see that this integral defines a trigonometric poly-
nomial of degree n.

Mn(f)(θ) =
n∑

j=0

(
n
j

)
cosj θ sinn−j θ

∫∫

R2

f(x, y)xjyn−jdxdy

=
n∑

j=0

anj sin
j θ cosn−j θ

(6.62)

where

anj =

(
n
j

)∫∫

R2

f(x, y)xjyn−jdxdy.

If f has bounded support then Mn(f)(θ) is a trigonometric polynomial of degree n. We
summarize these computations in a proposition.

Proposition 6.5.1. Suppose that f is a function with bounded support then

(1). Rf(t,ωωω) has bounded support.

(2). For all non-negative integers, n there exist constants {an0, . . . , ann} such that

∞∫

−∞

Rf(t,ωωω(θ))tndt =
n∑

j=0

anj sin
j θ cosn−j θ.

The proposition suggests the following question: Suppose that h(t,ωωω) is a function on
R× S1 such that

(1). h(t,ωωω) = h(−t,−ωωω),

(2). h(t,ωωω) = 0 if |t| > R,
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(3). For each non-negative integer n

mn(h)(θ) =

∞∫

−∞

h(t,ωωω(θ))tndt

is a trigonometric polynomial of degree n,

(4). h(t,ωωω) is a sufficiently smooth function of (t,ωωω).

Does there exist a function f in the domain of the Radon transform, vanishing outside of
the disk of radius R such that

h = Rf?

In other words: does h belong to the range of the Radon transform, acting on smooth
functions with bounded support? According to a theorem of Helgason and Ludwig, the
answer to this question turns out to be yes, however the proof of this result requires tech-
niques beyond the scope of this text. For a detailed discussion of this question the reader
is referred to [50]. More material can be found in [23], [44], [48] or [14].

We model the data measured in CT-imaging as the Radon transform of a piecewise
continuous function with bounded support. If we could make measurements for all (t,ωωω)
then it probably would not be the exact Radon transform of such a function. This is
because all measurements are corrupted by errors and noise. In particular the patient’s
movements, both internal (breathing, heart beat, blood circulation, etc.) and external,
affect the measurements. The measured data would therefore be inconsistent and may fail
to satisfy the moment conditions prescribed above.

6.6 Continuity of the Radon transform and its inverse∗

In order for the measurement process in X-ray tomography to be stable the map f 7→ Rf
should be continuous in a reasonable sense. Estimates for the continuity of this map
quantify the sensitivity of the output, Rf of a CT-scanner to changes in the input. The
less continuous the map, the more sensitive the measurements are to changes in the input.
Estimates for the continuity of inverse, h 7→ R−1h quantify the effect of errors in the
measured data on the quality of the reconstructed image. Because we actually measure the
Radon transform, estimates for the continuity of R−1 are more important for the problem
of image reconstruction. To discuss the continuity properties of either transform we need
to select norms for functions in the domain and range. Using the L2-norms on both, the
Parseval formula, (6.15) provides a starting point for this discussion.

The Parseval formula says that if f ∈ L2(R2) then D 1
2
Rf ∈ L2(R× S1). This estimate

has somewhat limited utility, as |r| vanishes at r = 0, we cannot conclude that Rf is
actually in L2(R× S1). In medical applications the data has bounded support and in this
case additional estimates are available. The implications of the Parseval formula for the
inverse transform are somewhat less desirable. It says that in order to control the L2-
norm of the reconstructed image we need to have control on the half-order derivative of the
measured data. Due to noise this is, practically speaking, not possible. After discussing the
continuity properties of the forward transform for data with bounded support we consider
the continuity properties of the approximate inverse described in section 6.4.
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6.6.1 Bounded support

Functions with bounded support satisfy better L2-estimates.

Proposition 6.6.1. Let f ∈ L2(R2) and suppose that f vanishes outside the disk of radius
L then, for each ωωω, we have the estimate

∞∫

−∞

|Rf(t,ωωω)|2dt ≤ 2L‖f‖2L2 .

Proof. The proof of the proposition is a simple application of the Cauchy-Schwarz inequality. Be-
cause f vanishes outside the disk of radius L we can express Rf as

Rf(t,ωωω) =

L∫

−L

f(tωωω + sω̂̂ω̂ω)ds.

Computing the L2-norm of Rf in the t-variable we obtain

∞∫

−∞

|Rf(t,ωωω)|2dt =
L∫

−L

∣∣∣∣∣∣

L∫

−L

f(tωωω + sω̂̂ω̂ω)ds

∣∣∣∣∣∣

2

dt

≤ 2L
L∫

−L

L∫

−L

|f(tωωω + sω̂̂ω̂ω)|2dsdt.

(6.63)

In the second line we used the Cauchy-Schwarz inequality.

The proposition shows that, if f vanishes outside a bounded set, then we control not
only the overall L2-norm of Rf but the L2-norm in each direction, ωωω separately. Using the
support properties of f more carefully gives a weighted estimate on the L2-norm of Rf.

Proposition 6.6.2. Let f ∈ L2(R2) and suppose that f vanishes outside the disk of radius
L then, for each ωωω, we have the estimate

∞∫

−∞

|Rf(t,ωωω)|2dt√
L2 − t2

≤ 2‖f‖2L2 .

Proof. To prove this estimate observe that

f(x, y) = χ[0,L2](x
2 + y2)f(x, y).

The Cauchy Schwarz inequality therefore implies that, for |t| ≤ L, we have the estimate

|Rf(t,ωωω)|2 =

∣∣∣∣∣∣

L∫

−L

f(tωωω + sω̂̂ω̂ω)χ[0,L2](s
2 + t2)ds

∣∣∣∣∣∣

2

≤ 2
L∫

−L

|f(tωωω + sω̂̂ω̂ω)|2ds

√
L2−t2∫

0

ds

= 2
√
L2 − t2

L∫

−L

|f(tωωω + sω̂̂ω̂ω)|2ds.

(6.64)
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Thus

L∫

−L

|Rf(t,ωωω)|2dt√
L2 − t2

≤
L∫

−L

2
√
L2 − t2√
L2 − t2

L∫

−L

|f(tωωω + sω̂̂ω̂ω)|2dsdt

= 2‖f‖2L2 .

(6.65)

A function in f ∈ L2(R2) with support in the disk of radius L can be approximated, in
the L2-norm, by a sequence of smooth functions < fn > . This sequence can also be taken
to have support in the disk of radius L. The Radon transforms of these functions satisfy
the estimates ∞∫

−∞

|Rfn(t,ωωω)|2dt ≤ 2L‖fn‖2L2

and

1

[2π]2

π∫

0

∞∫

−∞

|R̃fn(r,ωωω)|2|r|drdωωω = ‖fn‖2L2(R2).

In a manner analogous to that used to extend the Fourier transform to L2-functions we can
now extend the Radon transform to L2-functions with support in a fixed bounded set.

For bounded functions on R× S1 vanishing for |t| > L a norm is defined by

‖h‖22,L = sup
ωωω∈S1

L∫

−L

|h(t,ωωω)|2dt+ 1

[2π]2

π∫

0

∞∫

−∞

|h̃(r,ωωω)|2|r|drdωωω.

The closure of C0([−L,L] × S1) in this norm is a Hilbert space which can be identified
with a subspace of L2([−L,L] × S1). For f as above, Rf is defined as the limit of Rfn in
this norm. Evidently the estimates above hold for Rf. On the other hand the elementary
formula for Rf(t,ωωω) may not be meaningful as f may not be absolutely integrable over lt,ωωω.

While it is well beyond the scope of this text, it is nonetheless, true that a function on
R× S1 with support in the set |t| ≤ L and finite ‖ · ‖2,L-norm which satisfies the moment
conditions is the generalized Radon transform of function in L2(R2) with support in the
disk of radius L. A proof can be found in [23] or [50].

Exercises

Exercise 6.6.1. Suppose that f ∈ L2(R2) and that f vanishes outside the disk of radius L.
Show that ‖Rf(·,ωωω1)− Rf(·,ωωω2)‖L2(R) tends to zero as ωωω1 approaches ωωω2. In other words

the map ωωω 7→ Rf(·,ωωω) is a continuous map from the circle into L2(R). This shows that, if
we measure errors in the L2-norm then the Radon transform is not excessively sensitive to
small changes in the measurement environment.

Exercise 6.6.2. Suppose that < fn > is a sequence of smooth functions with support
in a fixed disk converging to f in L2(R2). For the terms in the approximating sequence,
< Rfn > the moments {mk(Rfn)} satisfy the conditions in Proposition 6.5.1. Show that
for the limiting function, the moments {mk(Rf)} are well defined and also satisfy these
conditions.
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6.6.2 Estimates for the inverse transform∗

The question of more immediate interest is the continuity properties of the inverse trans-
form. This is the more important question because we actually measure an approximation,
Rfm to Rf. It would appear that to estimate the error in the reconstructed image, we
would need to estimate

R−1Rfm − f = R−1(Rfm − Rf). (6.66)

There are several problems that immediately arise. The most obvious problem is that
Rfm may not be in the range of the Radon transform. If Rfm(t,ωωω) does not have an
L2-half-derivative in the t-direction, that is,

2π∫

0

∞∫

−∞

|R̃fm(r,ωωω)|2|r|drdωωω =∞,

then according to the Parseval formula, (6.15) Rfm is not the Radon transform of a function
in L2(R2). In order to control the L2-error,

‖R−1(Rfm − Rf)‖L2(R2)

it is necessary that measurements have such a half derivative and the difference

‖D 1
2
(Rfm − Rf)‖L2(R×S1)

is small. This means that we need to control the high frequency content of Rfm; in practice
this is not possible. While the mathematical problem of estimating the Radon inverse is
quite interesting and important, it has little bearing on the problem of practical image
reconstruction. A very nice treatment of the mathematical question is given in [50]. We
now turn our attention to understanding the continuity of the approximate inverses defined
in section 6.4.

An approximate inverse is denoted by R−1
ψ , where ψ is a regularizing function. This is

an even function whose Fourier transform satisifies the conditions

ψ̂(0) = 1,

ψ̂(r) = 0 for |r| > W.
(6.67)

It is also assumed that the radial function kψ defined in 6.58 is in the domain of the Radon
transform and

Rkψ = ψ.

In this case
R−1
ψ Rf = kψ ∗ f. (6.68)

Example 6.6.1. Let ψ̂ be the piecewise linear function

ψ̂(r) =





1 for |r| < W − C,
W−|r|
C for W − C ≤ |r| ≤W,

0 for |r| > W.

Radial graphs of ψ and kψ are shown in figure 6.3.
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Figure 6.3: Graphs of ψ̂ and kψ with W = 40, C = 5.

The reconstructed image is

fψ = R−1
ψ Rfm,

therefore we need to estimate the difference f −fψ. As kψ ∗f = R−1
ψ Rf we can rewrite this

difference as

f − fψ = (f − kψ ∗ f) + R−1
ψ (Rf −Rfm). (6.69)

The first term on the right hand side is the error caused by using an approximate inverse.
It is present even if we have perfect data. Bounds for this term depend in an essential
way on the character of the data. If f is assumed to be a continuous function of bounded
support then, by taking W very large, the pointwise error,

‖f − kψ ∗ f‖∞ = sup
x∈R2

|f(x)− kψ ∗ f(x)|

can be made as small as desired. It is more realistic to model f is a piecewise continuous
function. In this case the difference, |f(x)−kψ ∗f(x)| can be made small at points where f
is continuous. Near points where f has a jump the approximate reconstruction may display
an oscillatory artifact. Figure 6.4 is a radial graph of the reconstruction of χD1(x) using
the regularizing function graphed in figure 6.3.



6.6. CONTINUITY OF THE RADON TRANSFORM AND ITS INVERSE∗ 185

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4
x

Figure 6.4: Radial graph of kψ ∗ χD1 , with W = 40, C = 5.

Robust estimates for the second term are less dependent on the precise nature of f. For
h a function on R× S1 with bounded support, the approximate inverse is given by

(R−1
ψ h)(x) =

1

4π2

π∫

0

∞∫

−∞

h̃(r,ωωω)eir〈x,ωωω〉ψ̂(r)|r|dr

=
1

2π

π∫

0

(gψ ∗t h)(〈x,ωωω〉,ωωω)dωωω.

(6.70)

Here gψ = F−1(ψ̂(r)|r|) and ∗t indicates convolution in the t-variable.

A simple estimate for the sup-norm of R−1
ψ h follows from the sup-norm estimate for a

convolution
‖l ∗ k‖L∞ ≤ ‖l‖L∞‖k‖L1 .

Applying this estimate gives

‖R−1
ψ h‖L∞ ≤

‖gψ‖L∞
2π

π∫

0

∞∫

−∞

|h(t,ωωω)|dtdωωω (6.71)

If ψ̂ is non-negative then

|gψ(t)| ≤ |gψ(0)| =
∞∫

−∞

|r|ψ̂(r)dr.

Assuming that 0 ≤ ψ̂(t) ≤ M and that it vanishes outside the interval [−W,W ] leads to
the estimate

‖gψ‖L∞ ≤MW 2.

Combining this with (6.71) gives

‖R−1
ψ h‖L∞ ≤

MW 2

2π
‖h‖L1(R×S1). (6.72)
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This estimate shows that the sup-norm of the error in the approximate reconstructed image,
R−1
ψ (Rf − Rfm), can be controlled if the measurement errors can be controlled in the L1-

norm. It also shows that the error increases as W increases.

To summarize, the error in the approximate reconstruction is bounded by

|f − fψ| ≤ |f − kψ ∗ f |+
‖gψ‖L∞

2π
‖Rf −Rfm‖L1(R×S1). (6.73)

Recall that

F(kψ) = ψ̂ and F(gψ) = |r|ψ̂.

The function kψ is rapidly decreasing and sharply peaked if ψ̂ is smooth and W is taken
large. On the other hand gψ cannot decay faster than O(t−2). This is a consequence of the

fact that |r|ψ̂(r) is singular at r = 0.

Exercises

Exercise 6.6.3. Prove that ‖l ∗ k‖L∞ ≤ ‖l‖L∞‖k‖L1 .

Exercise 6.6.4. Suppose that ψ̂(ξ) is a smooth function with bounded support such that

ψ̂(0) 6= 0 and let

gψ(t) =
1

2π

∞∫

−∞

ψ̂(ξ)|ξ|eitξdξ.

Show that there is a constant C > 0 so that the following lower bound holds for large
enough t :

|gψ(t)| ≥
C

1 + t2
. (6.74)

Exercise 6.6.5. Use the central slice theorem to give a formula for kψ as a Bessel transform

of ψ̂(r).

Exercise 6.6.6. Use Hölder’s inequality to show that

‖l ∗ k‖L∞ ≤ ‖l‖L2‖k‖L2 .

Use this estimate to prove that

‖R−1
ψ h‖L∞ ≤

‖gψ‖L2(R)√
4π

‖h‖L2(R×S1).

Under the assumptions used above to estimate ‖gψ‖L∞ show that

‖gψ‖L2 ≤
√

2

3
MW

3
2 .
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6.7 The higher-dimensional Radon transform∗

See: A.2.1, A.2.5.

For the sake of completeness we briefly present the theory of the Radon transform in
higher dimensions. The parameterization of the affine hyperplanes in Rn is quite similar to
that used for lines in R2. Let ωωω be a unit vector in Rn, i.e. a point on Sn−1, and let t ∈ R,
each affine hyperplane has a representation in the form

lt,ωωω = {x ∈ Rn : 〈x,ωωω〉 = t}.

As in the two-dimensional case lt,ωωω = l−t,−ωωω and the choice of vector ωωω defines an orientation
on the hyperplane.

In order to define the Radon transform it is useful to choose vectors {e1, . . . , en−1} so
that

〈ωωω, ej〉 = 0 and 〈ei, ej〉 = δij for i, j = 1, . . . , n− 1.

The n-vectors 〈ωωω, e1, . . . , en−1〉 are an orthonormal basis for Rn. Define new orthogonal
coordinates, (t, s1, . . . , sn−1) on Rn by setting

x = tωωω +
n−1∑

j=1

sjej .

The n-dimensional Radon transform is defined by

Rf(t,ωωω) =

∫

lt,ωωω

fdσn−1 =

∫

Rn−1

f(tωωω +
∑

sjej)ds1 · · · dsn−1.

As before the Radon transform is an even function

Rf(t,ωωω) = Rf(−t,−ωωω).

With this definition, the n-dimensional analogue of the Central slice theorem is

Theorem 6.7.1 (Central slice theorem). If f is an absolutely integrable function on
Rn then

R̃f(r,ωωω) =

∞∫

−∞

Rf(t,ωωω)e−irtdt = f̂(rωωω). (6.75)

The central slice theorem and the Fourier inversion formula give the Radon inversion
formula.

Theorem 6.7.2 (The Radon Inversion Formula). Suppose that f is a smooth function
with bounded support on Rn then

f(x) =
1

2(2π)n

∫

Sn−1

∞∫

−∞

R̃f(r,ωωω)rn−1eir〈ωωω,x〉drdωωω. (6.76)
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Remark 6.7.1. This formula holds in much greater generality. Under the hypotheses in the
theorem all the integrals converge absolutely and the simplest form of the Fourier inversion
formula applies.

This formula takes a very simple form if the dimension is odd, set n = 2k + 1. In this
case the r-integral in (6.76) can be computed explicitly:

1

2π

∞∫

−∞

R̃f(r,ωωω)rn−1eir〈ωωω,x〉dr = (−1)k∂2k
t Rf(t, 〈ωωω,x〉). (6.77)

Using this expression in (6.76) we obtain

f(x) =
(−1)k
2(2π)2k

∫

Sn−1

(∂2k
t Rf)(〈ωωω,x〉,ωωω)dωωω.

Thus in odd dimensions the inverse of the Radon transform is differentiation in t followed
by back-projection.

The Laplace operator on Rn is defined by

∆Rnf =
n∑

j=1

∂2
xjf.

It is invariant under rotations so it follows that, for the coordinates (t, s1, . . . , sn−1) intro-
duced above we also have the formula

∆Rnf = ∂2
t f +

n−1∑

j=1

∂2
sjf. (6.78)

This formula allows us to establish a connection between R(∆Rnf) and Rf.

Proposition 6.7.1. Suppose that f is a twice differentiable function of bounded support
on Rn then

R(∆Rnf) = ∂2
t Rf. (6.79)

We close our discussion by explaining how the Radon transform can be applied to solve
the wave equation. Let τ denote the time variable and c the speed of sound. The “wave
equation” for a function u(x; τ) defined on Rn × R is

∂2
τu = c2∆Rnu.

If u satisfies this equation then it follows from the proposition that, for each ωωω ∈ Sn−1,
Ru(t,ωωω; τ) satisfies the equation

∂2
τRu = c2∂2

tRu.

Here Ru(t,ωωω; τ) is the Radon transform of u in the x-variables with τ the time parameter.
In other words, the Radon transform translates the problem of solving the wave equation
in n-dimensions into the problem of solving a family of wave equations in 1-dimension.

The one-dimensional wave equation is solved by any function of the form

v(t; τ) = g(ct+ τ) + h(ct− τ).



6.8. THE HILBERT TRANSFORM AND COMPLEX ANALYSIS∗ 189

The initial data is usually v(t; 0) and vτ (t; 0); it is related to g and h by

g(ct) =
1

2


v(t; 0) + c

t∫

−∞

vτ (s; 0)ds


 ,

h(ct) =
1

2


v(t; 0)− c

t∫

−∞

vτ (s; 0)ds


 .

(6.80)

If u(x; 0) = u0(x) and uτ (x; 0) = u1(x) then we see that

Ru(t,ωωω; τ) = g(ct+ τ ;ωωω) + h(ct− τ ;ωωω)

where

g(ct;ωωω) =
1

2


Ru0(t;ωωω) + c

t∫

−∞

Ru1(s;ωωω)ds


 ,

h(ct;ωωω) =
1

2


Ru0(t;ωωω)− c

t∫

−∞

Ru1(s;ωωω)ds


 .

(6.81)

Using these formulæ along with (6.76) one can obtain an explicit for the solution of the
wave equation.

Exercises

Exercise 6.7.1. Prove the central slice theorem.

Exercise 6.7.2. Let n = 2k + 1 and suppose that f is a function for which

Rf(t,ωωω) = 0 if |t| < R.

Prove that f(x) = 0 if ‖x‖ < R. Is this true in even dimensions?

Exercise 6.7.3. Prove formula (6.78) and formula 6.79.

Exercise 6.7.4. Prove Proposition (6.7.1) . Hint: Integrate by parts.

Exercise 6.7.5. Use the simplified version of the Radon inversion formula available for n =
3 to derive an explicit formula for the solution of the wave equation in 3 space dimensions
in terms of the initial data u0(x) and u1(x).

6.8 The Hilbert transform and complex analysis∗

In the earlier part of the chapter we used several explicit Hilbert transforms, here we explain
how these computations are done. We restrict to the case of square integrable functions. If
f ∈ L2(R) with Fourier transform f̂ then, as a limit-in-the-mean,

f(x) =
1

2π

∞∫

−∞

eixξ f̂(ξ)dξ.
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Define two L2-functions

f+(x) =
1

2π

∞∫

0

eixξ f̂(ξ)dξ,

f−(x) =
1

2π

0∫

−∞

eixξ f̂(ξ)dξ.

(6.82)

Obviously we have f = f+ + f− and Hf = f+ − f−. This decomposition is useful because
the function f+(x) has an extension as an analytic function in the upper half plane, H+ =
{x+ iy : y > 0}

f+(x+ iy) =
1

2π

∞∫

0

ei(x+iy)ξ f̂(ξ)dξ.

The Fourier transform of f+(x + iy) in the x-variable is just f̂(ξ)χ[0,∞)(ξ)e−yξ. Since
yξ > 0 we see that f+(x + iy) is in L2(R) for each y ≥ 0. A similar analysis shows that
f− has an analytic extension to the lower half plane, H− = {x + iy : y < 0} such that
f−(x + iy) ∈ L2(R) for each y ≤ 0. Indeed it is not hard to show that this decomposition
is unique. The precise statement is the following.

Proposition 6.8.1. Suppose that F (x + iy) is an analytic function in H+ such that for
y ≥ 0

(1).
∞∫

−∞

|F (x+ iy)|2dx < M,

(2).

lim
y↓0

∞∫

−∞

|F (x+ iy)|2dx = 0

then F ≡ 0.

Proof. By Theorem 4.4.4, a function satisfying the L2-boundedness condition has the following
property

F̂ (·+ iy) = f̂(ξ)e−yξ

where f̂(ξ) is the Fourier transform F (x). Moreover f̂(ξ) = 0 if ξ < 0. By the Parseval formula

∞∫

−∞

|F (x+ iy)|2dx =
∞∫

0

|f̂(ξ)|2e−2yξdξ.

The second condition implies that f̂(ξ) = 0 and therefore F ≡ 0.

If the functions f± can be explicitly determined then Hf can also be computed. If f is
a “piece” of an analytic function then this determination is often possible. The following
example is typical.
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Example 6.8.1. Let

f(x) =

{√
1− x2 for |x| < 1,

0 for |x| ≥ 1.

The analytic function,
√
1− z2 has a single valued determination in the complex plane

minus the subset of R, {x : |x| ≥ 1}. Denote this function by F (z). Of course F (x) = f(x)
for x ∈ (−1, 1) and the restrictions of F to the upper and lower half planes, F± are analytic.
Moreover for |x| > 1 we easily compute that

lim
ε↓0

F+(x+ iε) + F−(x− iε) = 0.

This would solve our problem but for the fact that F (x+ iy) is not in L2 for any y 6= 0.
To fix this problem we need to add a correction term that reflects the asymptotic behavior
of F (z) for large z. Indeed if we set

f±(z) =
1

2
[F±(z)± iz]

then a simple calculation shows that

f+(x) + f−(x) = f(x) for all real x

and that

f±(x± iy) '
1

x
for large x

and therefore f±(x ± iy) ∈ L2(R) for all y > 0. This allows us to compute the Hilbert
transform of f

Hf(x) = f+(x)− f−(x) =





ix for |x| < 1,

i(x+
√
x2 − 1) for x < −1,

i(x−
√
x2 − 1) for x > 1.

(6.83)

Exercise

Exercise 6.8.1. Compute the Hilbert transform of χ[−1,1](x). A good place to start is with
the formula Hf = limε↓0 hε ∗ f, see section 6.3.


