
Chapter 4

Introduction to the Fourier
transform

In this chapter we introduce the Fourier transform and review some of its basic properties.
The Fourier transform is the “swiss army knife” of mathematical analysis; it is a powerful
general purpose tool with many useful special features. In particular the theory of the
Fourier transform is largely independent of the dimension: the theory of the Fourier trans-
form for functions of one variable is formally the same as the theory for functions of 2, 3 or
n variables. This is in marked contrast to the Radon, or X-ray transforms. For simplicity
we begin with a discussion of the basic concepts for functions of a single variable, though
in some definitions, where there is no additional difficulty, we treat the general case from
the outset.

4.1 The complex exponential function.

See: 2.2, A.4.3 .

The building block for the Fourier transform is the complex exponential function, eix.
The basic facts about the exponential function can be found in section A.4.3. Recall
that the polar coordinates (r, θ) correspond to the point with rectangular coordinates
(r cos θ, r sin θ). As a complex number this is

r(cos θ + i sin θ) = reiθ.

Multiplication of complex numbers is very easy using the polar representation. If z = reiθ

and w = ρeiφ then
zw = reiθρeiφ = rρei(θ+φ).

A positive number r has a real logarithm, s = log r, so that a complex number can also be
expressed in the form

z = es+iθ.

The logarithm of z is therefore defined to be the complex number

log z = s+ iθ = log |z|+ i tan−1

(
Im z

Re z

)
.
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As exp(2πi) = 1, the imaginary part of the log z is only determined up to integer multiplies
of 2π.

Using the complex exponential we build a family of functions, {eixξ : ξ ∈ R}. Some-
times we think of x as the variable and ξ as a parameter and sometimes their roles are
interchanged. Thinking of ξ as a parameter we see that eixξ is a 2π

ξ -periodic function, that
is

exp(i(x+
2π

ξ
)ξ) = exp(ixξ).

In physical applications eixξ describes an oscillatory state with frequency ξ
2π and wave length

2π
ξ . The goal of Fourier analysis is to represent “arbitrary” functions as linear combinations

of these oscillatory states. Using (A.57) we easily derive the fact that

∂xe
ixξ = iξeixξ. (4.1)

Loosely speaking this formula says that eixξ is an eigenvector with eigenvalue iξ for the

linear operator ∂x. In quantum mechanics eixξ is a state with momentum ξ and energy |ξ|2

2 .

Exercises

Exercise 4.1.1. If a is a real number then it is a consequence of the Fundamental Theorem
of Calculus that

x∫

0

eaydy =
eax − 1

a
(4.2)

Use the power series for the exponential to prove that this formula remains correct, even if
a is a complex number.

Exercise 4.1.2. Use the power series for the exponential to prove that (4.1) continues to
hold for ξ any complex number.

Exercise 4.1.3. Use the differential equation satisfied by ex to show that exe−x = 1. Hint:
Use the uniqueness theorem for solutions of ODEs.

Exercise 4.1.4. If Re a < 0 then the improper integral is absolutely convergent:

∞∫

0

eaxdx =
−1
a
.

Using the triangle inequality (not the explicit formula) show that

∣∣∣∣∣∣

∞∫

0

eaxdx

∣∣∣∣∣∣
≤ 1

|Re a| .

Exercise 4.1.5. Which complex numbers have purely imaginary logarithms?
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4.2 The Fourier transform for functions of a single variable

We now turn our attention to the Fourier transform for functions of a single real variable.
As the complex exponential itself assumes complex values, it is natural to consider complex
valued functions from the outset. The theory for functions of several variables is quite
similar and is treated later in the chapter.

4.2.1 Absolutely integrable functions

See: 2.2.2, A.5.1.

Let f be a function defined on Rn, recall that f is absolutely integrable if

‖f‖1 =

∫

Rn

|f(x)|dx <∞.

The set of such functions is a vector space. It would be natural to use ‖ · ‖1 to define
a norm on this vector space, but there is a small difficulty: If f is supported on a set
of measure zero then ‖f‖1 = 0. In other words there are non-zero, absolutely integrable
functions with “norm” zero. As real measurements are usually expressed as integrals, two
functions which differ on a set of measure zero cannot be distinguished by any practical
measurement. For example the functions χ[0,1] and χ[0,1) are indistiguishable from the point
of view of measurements and of course

‖χ[0,1] − χ[0,1)‖1 = 0.

The way to circumvent this technical problem is to declare that two absolutely integrable
functions, f1 and f2 are the same whenever f1 − f2 is supported on a set of measure
zero. In other words, we identify two states which cannot be distinguished by any realistic
measurment. This defines a equivalence relation on the set of integrable functions. The
normed vector space L1(Rn) is defined to be the set of absolutely integrable functions
modulo this equivalence relation with norm defined by ‖ · ‖1. This is a complete, normed
linear space.

This issue arises whenever an integral is used to define a norm. Students unfamiliar
with this concept need not worry: As it plays very little role in imaging (or mathematics,
for that matter) we will usually be sloppy and ignore this point, acting as if the elements
of L1(Rn) and similar spaces are ordinary functions.

4.2.2 The Fourier transform for integrable functions

The natural domain for the Fourier transform is the space of absolutely integrable functions.

Definition 4.2.1. The Fourier transform of an absolutely integrable function f, defined
on R is the function f̂ defined on R by the integral

f̂(ξ) =

∞∫

−∞

f(x)e−ixξdx. (4.3)
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The utility of the Fourier transform stems from the fact that f can be “reconstructed”
from f̂ . A result that suffices for most of our applications is the following:

Theorem 4.2.1 (Fourier inversion formula). Suppose that f is an absolutely integrable

function such that f̂ is also absolutely integrable, then

f(x) =
1

2π

∞∫

−∞

f̂(ξ)eixξdξ. (4.4)

Remark 4.2.1. Formula (4.4) is called the Fourier inversion formula. It is the prototype of
all reconstruction formulæ used in medical imaging.

Proof. We give a proof of the inversion formula under the additional assumption that f is continuous,
this assumption is removed in section 5.1. We need to show that

f(x) =
1

2π

∞∫

−∞

f̂(ξ)eiξxdξ.

Because f̂ is in L1(R) it is not difficult to show that

1

2π

∞∫

−∞

f̂(ξ)eiξxdξ = lim
ε→0+

1

2π

∞∫

−∞

f̂(ξ)e−εξ
2

eiξxdξ

= lim
ε→0+

1

2π

∞∫

−∞

∞∫

−∞

f(y)e−εξ
2

eiξ(x−y)dydξ.

(4.5)

Interchange the integrations in the last formula we use example 4.2.4 to compute the Fourier trans-
form of the Gaussian to get

lim
ε→0+

1

2π

∞∫

−∞

∞∫

−∞

f(y)e−εξ
2

eiξ(x−y)dydξ = lim
ε→0+

1

2
√
επ

∞∫

−∞

f(y)e−
(x−y)2

4ε dy

= lim
ε→0+

1√
π

∞∫

−∞

f(x− 2
√
εt)e−t

2

dt.

(4.6)

As f is continuous and integrable it follows that the limit in the last line is

f(x)√
π

∞∫

−∞

e−t
2

dt.

The proof is completed by observing that this integral equals
√
π.

Remark 4.2.2. The Fourier transform and its inverse are integral transforms which are
frequently thought of as mappings. In this context it is customary to use the notation:

F(f) =
∞∫

−∞

f(x)e−ixξdx,

F−1(f) =
1

2π

∞∫

−∞

F(f)(ξ)eixξdξ.

(4.7)
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Observe that the operation performed to recover f from f̂ is almost the same as the

operation performed to obtain f̂ from f. Indeed if fr(x)
d
= f(−x) then

F−1(f) =
1

2π
F(fr). (4.8)

This symmetry accounts for many of the Fourier transform’s remarkable properties. As the
following example shows, the assumption that f is in L1(R) does not imply that f̂ is as
well.

Example 4.2.1. Define the function

r1(x) =

{
1 for − 1 < x < 1,

0 for 1 < |x|. (4.9)

The Fourier transform of r1 is

r̂1(ξ) =

1∫

−1

e−ξxdx =
1

−iξ e
−ξx

∣∣∣∣
1

−1

=
2 sin ξ

ξ
,

and
∞∫

−∞

|r̂1(ξ)|dξ = 2

∞∫

−∞

| sin ξ|
|ξ|

diverges. So while r1 is absolutely integrable its Fourier transform r̂1 is not. As the Fourier
transform of r1 is such an important function in image processing, we define

sinc(x)
d
=

sin(x)

x
.

Example 4.2.2. Recall that χ[a,b)(x) equals 1 for a ≤ x < b and zero otherwise. Its Fourier
transform is given by

χ̂[a,b)(ξ) =
e−ibξ − e−iaξ

iξ
. (4.10)

Example 4.2.3. A family of functions arising in magentic resonance imaging are those of
the form

f(x) = χ[0,∞)(x)e
iαxe−βx, α ∈ R and β > 0.

By simply computing the integral we find that

f̂(ξ) =
1

β + i(ξ − α)

Using the fact that eiαx = cos(αx) + i sin(αx) it is not difficult to show that

F(cos(αx)e−βxχ[0,∞)(x)) =
β + iξ

β2 + α2 − ξ2 + 2iξβ

and

F(sin(αx)e−βxχ[0,∞)(x)) =
α

β2 + α2 − ξ2 + 2iξβ
.

(4.11)
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Example 4.2.4. The “Gaussian,” e−x
2
is a function of considerable importance in image

processing and mathematics. Its Fourier transform was already used in the proof of the
inversion formula. For later reference we record its Fourier transform:

F(e−x2
)(ξ) =

∞∫

−∞

e−x
2
e−iξxdx

=
√
πe−

ξ2

4 ,

(4.12)

or more generally

F(e−ax2
)(ξ) =

√
π

a
e−

ξ2

4a . (4.13)

This is derived in section 4.2.3. Note that e−
x2

2 is an eigenvector of the Fourier transform,
with eigenvalue

√
2π.

4.2.3 Appendix: The Fourier transform of a Gaussian∗

For completeness we include a derivation of the Fourier transform of the Gaussian e−x
2

. It uses the
Cauchy integral formula for analytic functions of a complex variable. The Fourier transform is given
by

F(e−x2

)(ξ) =

∞∫

−∞

e−(x2+ixξ)dx

= e−
ξ2

4

∞∫

−∞

e−(x+iξ/2)2dx.

(4.14)

The second integral is the complex contour integral of the analytic function e−z
2

along the contour

Im z = ξ/2. Because e−z
2

decays rapidly to zero as |Re z| tends to infinity, Cauchy’s theorem implies
that the contour can be shifted to the real axis without changing the value of the integral, that is

∞∫

−∞

e−(x+iξ/2)2dx =

∞∫

−∞

e−x
2

dx. (4.15)

To compute the last integral observe that



∞∫

−∞

e−x
2

dx




2

=

∞∫

−∞

e−x
2

dx

∞∫

−∞

e−y
2

dy

=

2π∫

0

∞∫

0

e−r
2

rdrdθ

= 2π

∞∫

0

e−s
ds

2

= π.

(4.16)
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Polar coordinates are used in the second line; in the second to last line we let s = r2. Combining
these formulæ gives

F(e−x2

) =
√
πe−

ξ2

4 .

Exercises

Exercise 4.2.1. Show that if f is a continuous, absolutely integrable function then

lim
ε→0+

1√
π

∞∫

−∞

f(x− 2
√
εt)e−t

2
dt = f(x).

Exercise 4.2.2. Suppose that f is absolutely integrable, show that f̂ is a bounded, con-
tinuous function.

Exercise 4.2.3. Prove the identity (4.8).

Exercise 4.2.4. Prove formula (4.10). Show that for any numbers a < b there is a constant
M so that

|χ̂[a,b)(ξ)| ≤
M

1 + |ξ| .

Exercise 4.2.5. Prove the formulæ in (4.11) and show that

F(e−β|x|eiαx) = 2β

β2 + (ξ − α)2 .

Exercise 4.2.6. Derive the formula for F(e−ax2
) from the formula for F(e−x2

).

Exercise 4.2.7. Show that for any k ∈ N ∪ {0} the function hk = (∂x − x)ke−
x2

2 is an
eigenfunction of the Fourier transform. That is F(hk) = λkhk. Find λk. Hint: Integrate by
parts and use induction. Find formulæ for h1, h2, h3.

Exercise 4.2.8. ∗ Give a detailed justification for (4.15).

4.2.4 Regularity and decay

See: A.5.1, A.7.1.

It is a general principle that the regularity properties of f are reflected in the decay
properties of its Fourier transform f̂ and similarly the regularity of the Fourier transform is a
reflection of the decay properties of f.Without any regularity, beyond absolute integrability
we have the fundamental result:

Lemma 4.2.1 (The Riemann-Lebesgue Lemma). If f is an absolutely integrable func-

tion then its Fourier transform f̂ is a continuous function which goes to zero at infinity.
That is, for η ∈ R,

lim
ξ→η

f̂(ξ) = f̂(η) and lim
ξ→±∞

f̂(ξ) = 0. (4.17)
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Proof. The second statement is a consequence of the basic approximation theorem for L1-functions,
Theorem A.7.2. According to this theorem, given ε > 0 there is a step function F, given by

F (x) =

N∑

j=1

cjχ[aj ,bj)(x).

so that
∞∫

−∞

|f(x)− F (x)| < ε.

Estimating the difference of their Fourier transforms gives

|F̂ (ξ)− f̂(ξ)| =

∣∣∣∣∣∣

∞∫

−∞

(F (x)− f(x))e−ixξdx

∣∣∣∣∣∣

≤
∞∫

−∞

|F (x)− f(x)|dx

≤ ε.

(4.18)

Since ε is an arbitrary positive number, it therefore suffices to show that lim|ξ|→∞ F̂ (ξ) = 0. The
Fourier transform of F is

F̂ (ξ) =
N∑

j=1

cjχ̂[aj ,bj)(ξ)

=

N∑

j=1

cj
e−ibjξ − e−iajξ

iξ
.

(4.19)

The second line shows that there is a constant C so that

|F̂ (ξ)| ≤ C

1 + |ξ| .

The continuity of f̂(ξ) is left as an exercise.

To go beyond (4.17) we need to introduce quantitative measures of regularity and de-
cay. A simple way to measure regularity is through differentiation: the more derivatives a
function has, the more regular it is.

Definition 4.2.2. For j ∈ N∪ {0}, the set of functions on R with j continuous derivatives
is denoted by Cj(R). The set of infinitely differentiable functions is denoted by C∞(R).

Since the Fourier transform involves integration over the whole real line it is important
to assume that these derivatives are also integrable. To quantify rates of decay we compare
a function f to a simpler function such as a power of ‖x‖.

Definition 4.2.3. A function f, defined on Rn, decays like ‖x‖−α if there are constants C
and R so that

|f(x)| ≤ C

‖x‖α for ‖x‖ > R.

This is sometimes denoted by “f = O(‖x‖−α) as ‖x‖ tends to infinity.”
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The elementary formula for integration by parts is often useful in Fourier analysis. Let
f and g be differentiable functions on the interval [a, b] then

b∫

a

f ′(x)g(x)dx = f(x)g(x)

∣∣∣∣
x=b

x=a

−
b∫

a

f(x)g′(x)dx. (4.20)

We need an extension of this formula with a = −∞ and b =∞. For our purposes it suffices
to assume that fg, f ′g and fg′ are absolutely integrable, the integration by parts formula
then becomes

∞∫

−∞

f ′(x)g(x)dx = −
∞∫

−∞

f(x)g′(x)dx. (4.21)

This formula follows by taking letting a and b tend to infinity in (4.20). That the integrals
converge is an immediate consequence of the assumption that f ′g and fg′ are absolutely
integrable. The assumption that fg is also absolutely integrable implies the existence of
sequences < an > and < bn > so that

lim
n→∞

an = −∞ and lim
n→∞

bn =∞,

lim
n→∞

fg(an) = 0 and lim
n→∞

fg(bn) = 0.
(4.22)

Taking the limits in (4.20) along these sequences gives (4.21).
Suppose that f is an absolutely integrable function with an absolutely integrable first

derivative, that is
∞∫

−∞

[|f(x)|+ |f ′(x)|]dx <∞.

Provided ξ 6= 0 we can use (4.21) to obtain a formula for f̂(ξ) :

f̂(ξ) =

∞∫

−∞

f(x)e−ixξdx

=

∞∫

−∞

f ′(x)
e−ixξ

iξ
dx.

(4.23)

That is

f̂(ξ) =
f̂ ′(ξ)

iξ
.

Because f ′ is absolutely integrable the Riemann-Lebesgue lemma implies that f̂ ′ tends to
zero as |ξ| tends to ∞. Combining our formula for f̂ with this observation we see that f̂
goes to zero more rapidly than |ξ|−1. This should be contrasted with the computation of
the Fourier transform of r1. The function r̂1 tends to zero as |ξ| tends to infinity exactly
like |ξ|−1. This is a reflection of the fact that r1 is not everywhere differentiable, having
jump discontinuities at ±1.



92 CHAPTER 4. INTRODUCTION TO THE FOURIER TRANSFORM

If f has j integrable derivatives then, by repeatedly integrating by parts, we get addi-
tional formulæ for f̂

f̂(ξ) =

[
1

iξ

]j
f̂ [j](ξ).

Again, because f [j] is absolutely integrable f̂ [j] tends to zero as |ξ| → ∞. We state the
result of these computations as a proposition.

Proposition 4.2.1. Let j be a positive integer. If f has j integrable derivatives then there
is a constant C so f̂ satisfies the estimate

|f̂(ξ)| ≤ C

(1 + |ξ|)j .

Moreover, for 1 ≤ l ≤ j, the Fourier transform of f [l] is given by

f̂ [l](ξ) = (iξ)lf̂(ξ). (4.24)

The rate of decay in f̂ is also reflected in the smoothness of f.

Proposition 4.2.2. Suppose that f is absolutely integrable and j is a non-negative inte-
ger. If f̂ decays like |ξ|−(j+1+ε), for an ε > 0, then f is continuous and has j continuous
derivatives.

Proof. The hypotheses of the proposition show that we may use the Fourier inversion formula to
obtain

f(x) =
1

2π

∞∫

−∞

f̂(ξ)eixξdξ.

In light of the decay of f̂ , we may differentiate this formula up to j times obtaining formulæ for
derivatives of f as absolutely convergent integrals:

f [l](x) =
1

2π

∞∫

−∞

f̂(ξ)[iξ]leixξdξ for 0 ≤ l ≤ j.

As [iξ]lf̂(ξ) is absolutely integrable for l ≤ j this shows that f has j continuous derivatives.

Remark 4.2.3. Note that if f has j integrable derivatives then f̂ decays faster than |ξ|−j .
The exact rate of decay depends on how continuous f [j] is. On the other hand, we need to
assume that f̂ decays faster than |ξ|−(1+j) to deduce that f has j-continuous derivatives. So
we appear to “lose” one order of differentiability when inverting the Fourier transform. Both
results are actually correct. The function r1 provides an example showing the second result
is sharp. It has a jump discontinuity and its Fourier transform, 2 sinc(ξ) decays like |ξ|−1.
To construct an example shoiwing that the first result is sharp, we now consider the case
(not actually covered by the proposition) of j = 0. By integrating the examples constructed
below, we obtain integrable functions with an integrable derivative whose Fourier transforms
decay slower than |ξ|−(1+ε), for any fixed positive ε > 0.
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Figure 4.1: Fuzzy functions.
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Figure 4.2: The function Re f12 at smaller scales.

Example 4.2.5. Let ϕ be a smooth, rapidly decaying function with Fourier transform ϕ̂
which satisfies the following conditions

(1). 0 ≤ ϕ̂(ξ) ≤ 1 for all ξ,

(2). ϕ̂(0) = 1,

(3). ϕ̂(ξ) = 0 if |ξ| > 1.

For example we could take

ϕ̂(ξ) =

{
e
− 1

1−ξ2 if |ξ| < 1,

0 if |ξ| ≥ 1.

In fact the details of this function are not important, only the listed properties are needed
to construct the examples. For each k ∈ N define the function

f̂k(ξ) =
∞∑

n=1

ϕ̂(ξ − nk)
n2

.
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For a given ξ at most one term in the sum is non-zero. If k > 1 then f̂k is zero “most of
the time.” On the other hand the best rate of decay that is holds for all ξ is

|f̂k(ξ)| ≤
C

|ξ| 2k
.

By using a large k we can make this function decay as slowly as we like. Because
∑
n−2 <∞

the Fourier inversion formula applies to give

fk(x) = ϕ(x)
∞∑

n=1

eixn
k

n2
.

The infinite sum converges absolutely and uniformly in x and therefore fk is a continuous
function. Because ϕ decays rapidly at infinity so does fk. This means that fk is an absolutely

integrable, continuous function whose Fourier transform goes to zero like |ξ|− 2
k . These

examples show that the rate of decay of the Fourier transform of a continuous, absolutely
integrable function can be as slow as one likes. The function, fk is the smooth function ϕ,
modulated by noise. The graphs in figure 4.1 show the real parts of these functions; they
are very “fuzzy.” The fact that these functions are not differentiable is visible in figure 4.2.
These graphs show f12 at smaller and smaller scales. Observe that f12 does not appear
smoother at small scales than at large scales.

These examples demonstrate that there are two different phenomena governing the rate
of decay of the Fourier transform. The function r1 is very smooth, except where it has
a jump. This kind of very localized failure of smoothness produces a characteristic |ξ|−1

rate of decay in the Fourier transform. In the L1-sense the function r1 is very close to
being a continuous function. In fact by using linear interpolation we can find piecewise
differentiable functions very close to r1. These sort of functions frequently arise in medical
imaging. Each function fk is continuous, but very fuzzy. The larger k is, the higher the
amplitude of the high frequency components producing the fuzz and the slower the rate of
decay for f̂k. These functions are not close to differentiable functions in the L1 sense. Such
functions are typical of random processes used to model noise.

The forgoing results establish the connection between the regularity of f and the decay
of its Fourier transform. If on the other hand, we know that f itself decays then this is
reflected in increased regularity of its Fourier transform.

Proposition 4.2.3. Suppose that j is a positive integer and

∞∫

−∞

|f(x)|(1 + |x|)jdx <∞,

then f̂(ξ) has j-continuous derivatives which tend to zero as |ξ| tends to infinity. In fact
for 0 ≤ k ≤ j

∂kξ f̂(ξ) =

∞∫

−∞

(−ix)kf(x)e−ixξdx. (4.25)

Of course (4.25) gives a formula for the Fourier transform of xkf(x) in terms of the
Fourier transform of f :

F(xkf)(ξ) = ik∂kξ f̂(ξ). (4.26)
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A special case of this proposition arises if f vanishes outside a bounded interval. In this
case xkf(x) is absolutely integrable for any positive integer k and therefore f̂ is an infinitely
differentiable function. The derivatives tend to zero as |ξ| tends to infinity but the rate of
decay may be the same for all the derivatives, for example

r̂1(ξ) =
2 sin ξ

ξ
.

Differentiating this function repeatedly gives a sum of terms one of which tends to zero
exactly like |ξ|−1. This further confirms our principle that the rate of decay of the Fourier
transform is a reflection of the smoothness of the function.

Example 4.2.6. An important application of the Fourier transform is to study ordinary
differential equations with constant coefficients. Suppose that {a0, . . . , an} are complex
numbers, we would like to study the solutions of the differential equation

Af
d
=

n∑

j=0

aj∂
j
xf = g.

Proceeding formally, take the Fourier transform of both sides, (4.24) gives relation




n∑

j=0

aj(iξ)
j


 f̂(ξ) = ĝ(ξ) (4.27)

The polynomial,

PA(ξ) =
n∑

j=0

aj(iξ)
j

is called the characteristic polynomial for the differential operator A. If a complex number
ξ0 is a root of this equation, i.e. PA(ξ0) = 0 then the exponential function v0 = exp(iξ0x)
is a solution of the homogeneous equation Av0 = 0.

If on the other hand, PA has no real roots and g is absolutely integrable then we can
divide in (4.27) to obtain

f̂(ξ) =
ĝ(ξ)

PA(ξ)
.

Using the Fourier inversion formula we obtain a particular solution to the equation Af = g,

fp(x) =
1

2π

∞∫

−∞

ĝ(ξ)eiξxdξ

PA(ξ)
. (4.28)

The general solution is of the form fp+ f0 where Af0 = 0. If PA has real roots then a more
careful analysis is required, see [7].

Exercises

Exercise 4.2.9. ? Let f be an absolutely integrable function. Show that f̂ is a continuous
function. Extra credit: Show that f̂ is uniformly continuous on the whole real line.
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Exercise 4.2.10. If fg is absolutely integrable show that sequences exist satisfying (4.22).

Exercise 4.2.11. Suppose that f ′g and fg′ are absolutely integrable. Show that the limits

lim
x→∞

fg(x) and lim
x→−∞

fg(x)

both exist. Does (4.21) hold even if fg is not assumed to be absolutely integrable?

Exercise 4.2.12. Prove that for any number j the jth-derivative ∂jξ r̂1 has a term which

decays exactly like |ξ|−1.

Exercise 4.2.13. Show that fp, defined in example 4.28 and its first n derivatives tend to
zero as |x| tends to infinity.

Exercise 4.2.14. Show that the function, ϕ defined in example 4.2.5 is infinitely differen-
tiable.

4.2.5 Fourier transform on L2(R)

See: A.2.4, A.2.5, A.5.2, A.5.5.

In the foregoing discussion we considered absolutely integrable functions. The Fourier
transform is then defined in terms of an absolutely convergent integral. As we observed,
this does not imply that the Fourier transform is itself absolutely integrable. In fact, it is
quite difficult to describe the range of F when the domain is L1(R). Using the L1-norm,
there are also discrepancies in the quantitative relationships between the smoothness of a
function and the rate of decay of its Fourier transform. A more natural condition, when
working with Fourier transform is square-integrability.

Definition 4.2.4. A complex valued function f, defined on Rn is square-integrable if

‖f‖2L2 =

∫

Rn

|f(x)|2dx <∞.

The set of such functions, with norm defined by ‖ · ‖L2 , is denoted L2(Rn). With this norm
L2(Rn) is a complete, normed linear space.

The norm on L2(Rn) is defined by an inner product,

〈f, g〉L2 =

∫

Rn

f(x)g(x)dx.

This inner product satisfies the usual Cauchy-Schwarz inequality.

Proposition 4.2.4. If f, g ∈ L2(Rn) then

|〈f, g〉L2 | ≤ ‖f‖L2‖g‖L2 . (4.29)
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Proof. The proof of the Cauchy-Schwarz inequality for L2(Rn) is formally identical to the proof for
Cn given in the proof of Proposition 2.2.2. The verification of this fact is left to the exercises.

Recall a normed linear space is complete if every Cauchy sequence has a limit. The
completeness of L2 is quite important for what follows.

Example 4.2.7. The function f(x) = (1 + |x|)− 3
4 is not absolutely integrable, but it is

square-integrable. On the other hand the function

g(x) =
χ[−1,1](x)√

|x|

is absolutely integrable but not square-integrable.

An L2-function is always locally absolutely integrable. This means that for any finite
interval, [a, b] the following integral is finite

b∫

a

|f(x)|dx.

To prove this we use the Cauchy-Schwarz inequality with g = 1 :

b∫

a

|f(x)|dx ≤
√
|b− a|

√√√√√
b∫

a

|f(x)|2dx ≤
√
|b− a|‖f‖L2 .

The reason square-integrability is a natural condition is contained in the following the-
orem.

Theorem 4.2.2 (Parseval formula). If f is absolutely integrable and also square-integrable,

then f̂ is square-integrable and

∞∫

−∞

|f(x)|2dx =

∞∫

−∞

|f̂(ξ)|2 dξ
2π
. (4.30)

Though very typical of arguments in this subject, the proof of this result is rather abstract.
It can safely be skipped as nothing in the sequel relies upon it.

Proof. To prove (4.30) we use the Fourier inversion formula, Propositions 4.2.1 and 4.2.3 and the
following lemma.

Lemma 4.2.2. Suppose that f and g are integrable functions which are O(|x|−2) as |x| tend to
infinity. Then we have the identity

∞∫

−∞

f(x)ĝ(x)dx =

∞∫

−∞

f̂(x)g(x)dx. (4.31)
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The proof of the lemma is left as an exercise.
Suppose for the moment that f is an infinitely differentiable function with bounded support.

Proposition 4.2.1 shows that, for any positive k, f̂ is O(|ξ|−k) as |ξ| tends to infinity while Propo-
sition 4.2.3 shows that f̂ is smooth and similar estimates hold for its derivatives. Let g = [2π]−1f̂ ;
the Fourier inversion formula implies that ĝ = f̄ . The identity (4.31) applies to this pair giving

∞∫

−∞

|f(x)|2dx = 1

2π

∞∫

−∞

|f̂(ξ)|2dξ.

Thus verifying the Parseval formula for the special case of smooth functions with bounded support.
In Chapter 5 we show that, for any function satisfying the hypotheses of the theorem, there is

a sequence < fn > of smooth functions, with bounded support such that

lim
n→∞

‖f − fn‖L1 = 0 and lim
n→∞

‖f − fn‖L2 = 0.

The proof given so far applies to the differences to show that

∞∫

−∞

|fn(x)− fm(x)|2dx =
1

2π

∞∫

−∞

|f̂n(ξ)− f̂m(ξ)|2dξ. (4.32)

The left hand side tends to zero as m,n tend to infinity. Therefore < f̂n > is also an L2-Cauchy

sequence converging to a limit in L2(R). As < fn > converges to f in L1(R) the sequence < f̂n >

converges pointwise to f̂ . This implies that < f̂n > tends to f̂ in L2(R) as well. This completes the
proof of the theorem as

∫

−∞

|f(x)|2dx = lim
n→∞

∫

−∞

|fn(x)|2dx = lim
n→∞

1

2π

∫

−∞

|f̂n(ξ)|2dξ =
1

2π

∫

−∞

|f̂(ξ)|2dξ.

In many physical applications the square-integral of a function is interpreted as the
total energy. Up to the factor of 2π, Parseval’s formula says that the total energy in f
is the same as that in f̂ . Often the variable ξ

2π is thought of as a frequency. Following
the quantum mechanical practice, higher frequencies correspond to higher energies. In this
context |f̂(ξ)|2 is interpreted as the energy density of f at frequency ξ

2π . As we shall see,
“noise” is essentially a high frequency phenomenon, and a noisy signal has a lot of energy
at high frequencies.

The Parseval formula shows that the L2-norm is intimately connected to the Fourier
transform. When the L2-norm is used in both the domain and range, Parseval’s formula
says that F is a continuous linear transformation. This result indicates that it should be
possible to extend the Fourier transform to all functions in L2(R). This is indeed the case.
Let f ∈ L2(R), for each R > 0 define

f̂R(ξ) =

R∫

−R

f(x)e−ixξdx. (4.33)

From Parseval’s formula it follows that, if R1 < R2 then

‖f̂R1 − f̂R2‖2L2 = 2π

∫

R1≤|x|≤R2

|f(x)|2dx.
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Because f is square-integrable the right hand side of this formula goes to zero as R1 and
R2 tend to infinity. This says that, if we measure the distance in the L2-norm, then the
functions < f̂R > are clustering closer and closer together as R → ∞. Otherwise put,
< f̂R > is an L2-Cauchy sequence. Because L2(R) is a complete, normed vector space, this

implies that < f̂R > converges to a limit as R → ∞; this limit defines f̂ . The limit of a
sequence in the L2-norm is called a limit in the mean; it is denoted by the symbol LIM.

Definition 4.2.5. If f is a function in L2(R) then its Fourier transform is defined to be

f̂ = LIM
R→∞

f̂R,

where f̂R is defined in (4.33).

We summarize these observations in a proposition.

Proposition 4.2.5. The Fourier transform extends to define a continuous map from L2(R)
to itself. If f ∈ L2(R) then

∞∫

−∞

|f(x)|2dx =
1

2π

∞∫

−∞

|f̂(ξ)|2dξ.

Proof. The continuity statement follows from the Parseval formula. That the Parseval formula holds

for all f ∈ L2(R) is a consequence of the definition of f̂ and the fact that

R∫

−R

|f(x)|2dx = 1

2π

∞∫

−∞

|f̂R(ξ)|2dξ for R > 0.

In other words the Fourier transform extends to define a continuous map from L2(R) to
itself. There is however a price to pay as the Fourier transform of a function in L2(R) cannot
be directly defined by a simple formula like (4.3). For a function like f in example 4.2.7

the integral defining f̂ is not absolutely convergent.

Example 4.2.8. The function

f(x) =
1√

1 + x2

is square integrable but not absolutely integrable. We use integration by parts to compute
f̂R(ξ) :

f̂R(ξ) =
2 sinc(Rξ)√

1 +R2
−

R∫

−R

xe−ixξ

iξ(1 + x2)
3
2

.

It is now a simple matter to obtain the pointwise limit as R tends to infinity:

f̂(ξ) =

∞∫

−∞

xe−ixξ

iξ(1 + x2)
3
2

. (4.34)

In the exercise 4.2.16 you are asked to show that f̂R converges to f̂ in the L2-norm.
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A consequence of Parseval’s formula is the identity.

∞∫

−∞

f(x)g(x)dx =

∞∫

−∞

f̂(ξ)ĝ(ξ)
dξ

2π
. (4.35)

This is proved by applying (4.30) to f + tg and comparing the coefficients of powers t on
the right- and left-hand sides. Up to the factor of 2π, the Fourier transform preserves the
inner product. Recall that this is also a property of rotations of Euclidean space. Such
transformations of complex vector spaces are called unitary. Another consequence of the
Parseval formula is a uniqueness statement: a function in L2 is determined by its Fourier
transform.

Corollary 4.2.1. If f ∈ L2(R) and f̂ = 0, then f ≡ 0.

Remark 4.2.4. As noted in section 4.2.1 it would be more accurate to say that the set of
points for which f 6= 0 has measure 0.

The Fourier transform of a square-integrable function is generally not absolutely in-
tegrable so the inversion formula, proved above, does not directly apply. The inverse is
defined in much the same way as the Fourier transform itself.

Proposition 4.2.6 (Fourier inversion for L2(R)). For f ∈ L2(R) define

FR(x) =
1

2π

R∫

−R

f̂(ξ)dξ,

then f = LIM
R→∞

FR.

The proof is left to the exercises.
We conclude this section by summarizing the basic properties of the Fourier transform

which hold for integrable or square-integrable functions. These properties are consequences
of elementary properties of the integral.

1. Linearity:
The Fourier transform is a linear operation:

F(f + g) = F(f) + F(g), F(αf) = αF(f), α ∈ C.

2. Scaling:
The Fourier transform of f(ax), the function f dilated by a ∈ R, is given by

∞∫

−∞

f(ax)e−iξxdx =

∞∫

−∞

f(y)e−
iξy
a
dy

a

=
1

a
f̂

(
ξ

a

)
.

(4.36)
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3. Translation:
Let ft be the function f shifted by t, i.e. ft(x) = f(x− t). The Fourier transform
of ft is given by

f̂t(ξ) =

∞∫

−∞

f(x− t)e−iξxdx

=

∫
f(y)e−iξ(y+t)dy

= e−iξtf̂(ξ).

(4.37)

4. Reality:

If f is a real valued function then its Fourier transform satisfies f̂(ξ) = f̂(−ξ). This
shows that the Fourier transform of a real valued function is completely determined
by its values for positive (or negative) frequencies.

Recall the following definitions.

Definition 4.2.6. A function f defined on Rn is even if f(x) = f(−x). A function f
defined on Rn is odd if f(x) = −f(−x).

5. Evenness:
If f is even then f̂ is real valued. If f is odd then f̂ takes purely imaginary values.
If f is even its Fourier transform is given by the formula

f̂(ξ) = 2

∞∫

0

f(x) cos(ξx)dx. (4.38)

Exercises

Exercise 4.2.15. Give a detailed proof of Proposition 2.2.2. Explain the following state-
ment: “The Cauchy-Schwarz inequality is a statement about the 2-dimensional subspaces
of a vector space.”

Exercise 4.2.16. Prove that f̂R, defined in (4.34) converges to f̂ in the L2-norm.

Exercise 4.2.17. Let f(x) = χ[1,∞)(x)x
−1. Using the method of example 4.2.8 compute

the Fourier transform of f. Verify the convergence, in the L2-norm, of f̂R to f̂ .

Exercise 4.2.18. ? Prove Proposition 4.2.6. Hint: Use the Parseval formula to estimate
the difference ‖f − FR‖2L2 .

Exercise 4.2.19. Let f, g ∈ L2(R) by considering the functions f + tg where t ∈ C show
that the Parseval formula implies (4.35).

Exercise 4.2.20. ? Prove Lemma 4.2.2 and show that (4.31) holds for any pair of functions
in L2(R).
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Exercise 4.2.21. Verify the statement that if g = f̂ then ĝ = f̄ .

Exercise 4.2.22. Show that a function f ∈ L2(R) is zero if and only if 〈f, g〉 = 0 for every
g ∈ L2(R). Use this fact and the formula in exercise 4.2.20 to show that F(L2(R)) = L2(R).
Hint: If this were false then there would exist a non-zero function g ∈ L2(R) such that

〈g, f̂〉 = 0 for every f ∈ L2(R).

Exercise 4.2.23. Verify properties (4) and (5).

Exercise 4.2.24. Find a formula like (4.38) for the Fourier transform of an odd function.

Exercise 4.2.25. ∗ Suppose that m(ξ) is a bounded function. Show that the map from

L2(R) to itself defined by Am(f) = F−1(mf̂) is continuous.

4.2.6 A general principle in functional analysis

In the previous section we extended the definition of the Fourier transform to L2(R) by
using the Plancherel formula and the completeness of L2(R). This is an example of a general
principle in functional analysis and explains, in part, why completeness is such an important
property for a normed linear space. As we will encounter this situation again, we pause for
a moment to ennuciate this principle explicitly. Recall the following definition.

Definition 4.2.7. Let (V, ‖ · ‖) be a normed linear space. A subspace S of V is dense if
for every v ∈ V there is a sequence < vk >⊂ S such that

lim
k→∞

‖v − vk‖ = 0.

The general principle is that a bounded linear map, defined on a dense subset extends
to the whole space.

Theorem 4.2.3. Let (V1, ‖ · ‖1) and (V2, ‖ · ‖2) be normed, linear spaces and assume that
V2 is complete. Suppose that S1 is a dense subspace of V1 and A is a linear map from S1

to V2. If there exists a constant M such that

‖Av‖2 ≤M‖v‖1, (4.39)

for all v in S1 then A extends to define a linear map from V1 to V2, satisfying the same
estimate.

Proof. Let v be an arbitrary point in V1 and let < vk > be a sequence contained in S1 converging
to v. Because A is linear and S1 is a subspace, (4.39) implies that

‖A(vj − vk)‖2 ≤M‖vj − vk‖1.

This estimate shows that < Avk > is a Cauchy sequence in V2. From the completeness of V2 we
conclude that this sequence has a limit u. Provisionally define Av = u. To show that Av is well
defined we need to show that if < v′k >⊂ S1 is another sequence converging to v then < Av′k > also
converges to u. Since the two sequences have the same limit the difference ‖vk − v′k‖1 converges to
zero. The estimate (4.39) implies that

‖Avk −Av′k‖2 ≤M‖vk − v′k‖1,

showing that the limit is well defined. The fact that the extended map is linear is left as an
exercise.
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Exercises

Exercise 4.2.26. Show that the extension of A defined in the proof of Theorem 4.2.3 is
linear.

Exercise 4.2.27. Show that the only dense subspace of a finite-dimensional normed linear
space is the whole space.

4.3 Functions with weak derivatives

See: A.5.6.

If f and g are differentiable functions which vanish outside a bounded interval then the
integration by parts formula states that

∞∫

−∞

f ′(x)g(x)dx = −
∞∫

−∞

f(x)g′(x)dx. (4.40)

This formula suggests a way to extend the notion of differentiability to some functions
which do not have an ordinary derivative. Suppose that f is a locally integrable function
and there exists another locally integrable function f1 such that, for every C1-function g
which vanishes outside a bounded interval, we have the identity

∞∫

−∞

f1(x)g(x)dx = −
∞∫

−∞

f(x)g′(x)dx.

From the point of view any measurement defined by C1-functions with bounded support,
the function f1 looks like the derivative of f. If this condition holds then we say that f has
a weak derivative and write f ′ = f1. In this context the function g is called a test function.
It is clear from the definition that a function which is differentiable in the ordinary sense
is weakly differentiable and the two definitions of derivative agree. When it is important
to make a distinction the derivative defined as a limit of difference quotients is called a
classical derivative.

An important fact about weak derivatives is that they satisfy the fundamental theorem
of calculus. If f1 is the weak derivative of f then for any a < b we have that

f(b)− f(a) =
b∫

a

f1(x)dx. (4.41)

The proof of this statement is a bit more involved than one might expect. The basic idea
is to use a sequence of test functions in (4.40) which converge to χ[a,b]. We return to this is
Chapter 5.

The definition of weak derivative can be applied recursively to define higher order weak
derivatives. Suppose a locally integrable function f has a weak derivative f ′. If f ′ also has

a weak derivative then we say that f has two weak derivatives with f [2] d
= (f ′)′. More
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generally if f has j weak derivatives, {f ′, . . . , f [j]} and f [j] has a weak derivative then we
say that f has j+1 weak derivatives. The usual notations are also used for weak derivatives,
i.e. f ′, f [j+1], ∂jxf, etc.

It is easy to see from examples that a weak derivative can exist even when f does not
have a classical derivative.

Example 4.3.1. The function

f(x) =





0 if |x| > 1,

|x+ 1| if − 1 ≤ x ≤ 0,

|x− 1| if 0 ≤ x ≤ 1

does not have a classical derivative at x = −1, 0 and 1. However the function

g(x) =





0 if |x| > 1,

1 if − 1 ≤ x ≤ 0,

−1 if 0 ≤ x ≤ 1

is the weak derivative of f.

Weak differentiability is well adapted to the Fourier transform. Suppose that f is an
absolutely integrable function with a weak derivative which is also absolutely integrable.
The functions fe−ixξ and f ′e−ixξ are in L1(R) and therefore formula (4.21) applies to show
that

∞∫

−∞

f(x)e−ixξdx =
1

iξ

∞∫

−∞

f ′(x)e−ixξdx.

Thus the Fourier transform of the weak derivative is related to that of the original function
precisely as in the classically differentiable case.

The notion of weak derivative extends the concept of differentiability to a larger class of
functions. In fact this definition can be used to define derivatives of generalized functions.
This topic is discussed in Appendix A.5.6; the reader is urged to look over this section.

Exercises

Exercise 4.3.1. In example 4.3.1 prove that g is the weak derivative of f.

Exercise 4.3.2. Show that if f has a weak derivative then it is continuous.

Exercise 4.3.3. Show that if f has two weak derivatives then it has one classical derivative.

Exercise 4.3.4. Show that the definition for higher order weak derivatives is consistent: If
f has j weak derivatives and f [j] has k weak derivatives then f has k + j weak derivatives
and

f [k+j] = (f [j])[k].

Exercise 4.3.5. Show that Proposition 4.2.1 remains true if f is assumed to have j abso-
lutely integrable, weak derivatives.
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4.3.1 Functions with L2-derivatives∗

A especially useful condition is for the weak derivative to belong to L2.

Definition 4.3.1. Let f ∈ L2(R) we say that f has an L2-derivative if f has a weak
derivative which also belongs to L2(R).

A function in L2(R) which is differentiable in the ordinary sense and whose classical
derivative belongs to L2(R) is also differentiable in the L2-sense. Its classical and L2-
derivatives are equal. Using (4.41) it is not difficult to show that a function with an
L2-derivative is continuous. Applying the Cauchy-Schwarz inequality to the right hand
side of (4.41) gives the estimate

|f(b)− f(a)| ≤
√
|b− a|‖f1‖L2 .

In other words
|f(b)− f(a)|√

|b− a|
≤ ‖f1‖L2 .

A function for which this ratio is bounded is called a Hölder- 1
2 function. Such a function is

said to have a half a classical derivative.
If f ∈ L2(R) has an L2-derivative then the Fourier transform of f and f ′ are related

just as they would be if f had a classical derivative

f̂ ′(ξ) = iξf̂(ξ).

Moreover the Parseval identity carries over to give

∞∫

−∞

|f ′(x)|2dx =
1

2π

∞∫

−∞

|ξ|2|f̂(ξ)|2dξ.

On the other hand if ξf̂(ξ) is square-integrable then one can show that f has an L2-

derivative and its Fourier transform is iξf̂(ξ). This is what was meant by the statement
that the relationship between the smoothness of a function and the decay of the Fourier
transform is very close when these concepts are defined with respect to the L2-norm.

The higher L2-derivatives are defined exactly as in the classical case. If f ∈ L2(R) has
an L2-derivative, and f ′ ∈ L2 also has an L2-derivative, then we say that f has two L2-
derivatives. This can be repeated to define all higher derivatives. A simple condition for a
function f ∈ L2(R) to have j L2-derivatives, is that there are functions {f1, . . . , fj} ⊂ L2(R)
so that for every j-times differentiable function ϕ, vanishing outside a bounded interval and
1 ≤ l ≤ j we have that

〈f, ϕ[l]〉L2 = (−1)l〈fl, ϕ〉L2 .

The function fl is then the lth L2-derivative of f. Standard notations are also used for the
higher L2-derivatives, e.g. f [l], ∂lxf, etc.
The basic result about L2-derivatives is.

Theorem 4.3.1. A function f ∈ L2(R) has j L2-derivatives if and only if ξj f̂(ξ) is in
L2(R). In this case

f̂ [l](ξ) = (iξ)lf̂(ξ), (4.42)
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moreover
∞∫

−∞

|f [l](x)|2dx =
1

2π

∞∫

−∞

|ξ|2l|f̂(ξ)|2dξ. (4.43)

Exercises

Exercise 4.3.6. Suppose that f ∈ L2(R) has an L2(R)-derivative f ′. Show that if f
vanishes for |x| > R then so does f ′.

Exercise 4.3.7. Prove that if f ∈ L2(R) has an L2-derivative then f̂ ′(ξ) = iξf̂(ξ). Hint:
Use (4.35).

Exercise 4.3.8. Show that if f has an L2-derivative then f̂ is absolutely integrable. Con-
clude that f is a continuous function.

Exercise 4.3.9. Use the result of exercise 4.3.8 to prove that (4.41) holds under the
assumption that f and f ′ are in L2(R).

4.3.2 Fractional derivatives and L2-derivatives∗

See: A.5.6 .

In the previous section we extended the notion of differentiability to functions which
do not have a classical derivative. In the study of the Radon transform it turns out to be
useful to have other generalizations of differentiability. We begin with a generalization of
the classical notion of differentiability.

The basic observation is the following: a function f has a derivative if the difference
quotients

f(x+ h)− f(x)
h

have a limit as h→ 0. In order for this limit to exist it is clearly necessary that the ratios

|f(x+ h)− f(x)|
|h|

be uniformly bounded, for small h. Thus the basic estimate satisfied by a continuously
differentiable function is that the ratios

|f(x)− f(y)|
|x− y|

are locally, uniformly bounded. The function f(x) = |x| shows that these ratios can be
bounded without the function being differentiable. However, from the point of view of
measurements such a distinction is very hard to make.
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Definition 4.3.2. Let 0 ≤ α < 1, we say that a function f, defined in an interval [a, b],
has an αth-classical derivative if there is a constant M so that

|f(x)− f(y)|
|x− y|α ≤M, (4.44)

for all x, y ∈ [a, b]. Such a function is also said to be α-Hölder continuous.

The same idea can be applied to functions with L2-derivatives. Recall that an L2-
function has an L2-derivative if and only if ξf̂(ξ) ∈ L2(R). This is just the estimate

∞∫

−∞

|ξ|2|f̂(ξ)|2dξ <∞.

By analogy to the classical case we make the following definition.

Definition 4.3.3. A function f ∈ L2(R) has an αth L2-derivative if

∞∫

−∞

|ξ|2α|f̂(ξ)|2dξ <∞. (4.45)

There is no canonical way to define the “αth-L2-derivative operator.” The following
definition is sometimes useful. For α ∈ (0, 1) define the αth-L2-derivative to be

Dαf = LIM
R→∞

1

2π

R∫

−R

|ξ|αf̂(ξ)eiξxdξ.

This operation is defined precisely for those functions satisfying (4.45). Note that this
definition with α = 1 does not give the expected answer.

The relationship between these two notions of fractional differentiability is somewhat
complicated. As shown in the previous section: a function with one L2-derivative is Hölder-
1
2 . On the other hand, the function f(x) =

√
x is Holder-1

2 . That (
√
x)−1 is not square

integrable shows that having half a classical derivative does not imply that a function has
one L2-derivative.

Exercises

Exercise 4.3.10. Suppose that f satisfies the estimate in (4.44) with an α > 1. Show that
f is constant.

4.4 Some refined properties of the Fourier transform∗

See: A.4.1, A.4.3.

In this section we consider some properties of the Fourier transform that are somewhat
less elementary than those considered so far. The first question we consider concerns the
pointwise convergence of the inverse Fourier transform.
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4.4.1 Localization principle

Let f be a function in either L1(R) or L2(R); for each R > 0 define

fR(x) = F−1(χ[−R,R]f̂)(x) =
1

2π

R∫

−R

f̂(ξ)eixξdξ.

The function fR can be expressed directly in terms of f by the formula

fR(x) =

∞∫

−∞

f(y)
sin(R(x− y))
π(x− y) dy. (4.46)

If f is in L1(R) then (4.46) follows by inserting the definition of f̂ in the integral defining
fR and interchanging the order of the integrations. While if f is L2(R) then (4.46) follows
from the formula in exercise 4.2.20.

If f̂ is absolutely integrable then Theorem 4.2.1 shows that f(x) is the limit, as R→∞
of fR(x). If f is well enough behaved near to x then this is always the case, whether or

not f̂ (or for that matter f) is absolutely integrable. This is Riemann’s famous localization
principle for the Fourier transform.

Theorem 4.4.1 (Localization principle). Suppose that f belongs to either L1(R) or
L2(R). If f vanishes in an open interval containing x0 then

lim
R→∞

fR(x0) = 0.

Proof. The proof of this result is not difficult. The same proof works f is in L1 or L2. From (4.46)
we obtain

fR(x0) =

∞∫

−∞

f(y)
sin(R(x0 − y))
π(x0 − y)

dy

=

∞∫

−∞

[eiR(x0−y) − e−iR(x0−y)]
f(y)

2πi(x0 − y)
dy.

(4.47)

Because f vanishes in an interval containing x0, it follows that f(y)(x0 − y)−1 is an absolutely
integrable function. The conclusion of the theorem is therefore a consequence of the Riemann-
Lebesgue lemma.

Remark 4.4.1. In light of the linearity of the Fourier transform this result holds for any
function f which can be written as a sum f = f1 + f2 where fp ∈ Lp(R). The set of such
functions is denoted L1(R) + L2(R). This set is clearly a vector space.

This result has a simple corollary which makes clearer why it is called the “localization
principle.” Suppose that f and g are functions in L1(R) + L2(R) such that

(1). limR→∞ gR(x0) = g(x0) and

(2). f(x) = g(x) for x in an interval containing x0.
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The second condition implies that f(x)−g(x) = 0 in an interval containing x0 and therefore

f(x0) = g(x0) = lim
R→∞

gR(x0)

= lim
R→∞

gR(x0) + lim
R→∞

(fR(x0)− gR(x0))

= lim
R→∞

fR(x0).

(4.48)

In the second line we use Theorem 4.4.1. The Fourier inversion process is very sensitive to
the local behavior of f. It is important to note that this result is special to one dimension.
The analogous result is false for the Fourier transform in Rn if n ≥ 2. This phenomenon is
carefully analyzed in [57], see also section 4.5.5.

Exercises

Exercise 4.4.1. Give a complete derivation for (4.46) with f either integrable or square-
integrable.

Exercise 4.4.2. Suppose that f is a square integrable function which is continuously
differentiable for x ∈ (a, b). Show that for every x in this interval limR→∞ fR(x) = f(x).

4.4.2 The Heisenberg uncertainty principle

In this section we study relationships between the supp f and supp f̂ . The simplest such
result states that if a function has bounded support then its Fourier transform cannot.

Proposition 4.4.1. Suppose supp f is contained the bounded interval (−R,R) if f̂ also
has bounded support then f ≡ 0.

Proof. The radius of convergence of the series
∑∞

0 (−ixξ)j/j! is infinity, and it converges to e−ixξ,
uniformly on bounded intervals. Combining this with the fact that f has bounded support, we
conclude that we may interchange the integration with the summation to obtain

f̂(ξ) =

∞∫

−∞

f(x)e−iξxdx

=

R∫

−R

∞∑

j=0

f(x)
(−ixξ)j

j!
dx

=

∞∑

j=0

1

j!
(−iξ)j

R∫

−R

f(x)xjdx.

(4.49)

Since
∣∣∣∣
R∫

−R

f(x)xjdx

∣∣∣∣ ≤ Rj
R∫

−R

|f(x)|dx,

the terms of the series representing f̂(ξ) are bounded by the terms of a series having an infinite
radius of convergence; the jth term is bounded by

(R|ξ|)j
j!

R∫

−R

|f(x)|dx.
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Therefore the series expansion for f̂(ξ) also has an infinite radius of convergence. This argument

can be repeated to obtain the Taylor expansion of f̂(ξ) about an arbitrary ξ0 :

f̂(ξ) =

R∫

−R

e−i(ξ−ξ0)xf(x)eiξ0xdx

=

R∫

−R

∞∑

j=0

[−i(ξ − ξ0)x]j
j!

f(x)eiξ0xdx

=

∞∑

j=0

R∫

−R

[−i(ξ − ξ0)x]j
j!

f(x)eiξ0xdx

=

∞∑

j=0

[−i(ξ − ξ0)]j
j!

R∫

−R

f(x)xjeiξ0xdx.

(4.50)

If we let aξ0j =
∫
f(x)xjeiξ0xdx then

f̂(ξ) =

∞∑

0

aξ0j
[−i(ξ − ξ0)]j

j!
.

As above this expansion is valid for all ξ.

Suppose there exists ξ0 such that ∂
j
ξ f̂(ξ0) = 0 for all j = 0, 1, . . . Then f̂(ξ) ≡ 0 since all the

coefficients, aξ0j = ∂jξ f̂(ξ0) equal zero. This proves the proposition.

Remark 4.4.2. The proof actually shows that if f is supported on a finite interval and all
the derivatives of f̂ vanishes at a single point then f ≡ 0.

This result indicates that one cannot obtain both arbitrarily good resolution and de-
noising simultaneously. A famous quantitative version of this statement is the Heisenberg
uncertainty principle which we now briefly discuss using physical terms coming from quan-
tum mechanics and probability theory. The latter subject is discussed in Chapter 12. In
this context an L2-function f describes the state of a particle. The probability of finding

the particle in the interval [a, b] is defined to be
∫ b
a |f(x)|2dx. We normalize so that the

total probability is 1. By the Parseval formula,

∞∫

−∞

|f(x)|2dx =

∞∫

−∞

|f̂(ξ)|2 dξ
2π

= 1.

The expected value of the position of a particle is given by

E(x) =

∞∫

−∞

x|f(x)|2dx.

By translating in x we can normalize f to make E(x) zero. In physics, the Fourier transform
of f describes the momentum of a particle. The expected value of the momentum is

E(ξ) =

∫
ξ|f̂(ξ)|2 dξ

2π
.
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By replacing f by eiξ0xf for an appropriate choice of ξ0 we can also make E(ξ) = 0. With
these normalizations, the variance of the position and the momentum, (∆x)2 and (∆ξ)2,
are given by

(∆x)2 =

∞∫

−∞

x2|f(x)|2dx,

(∆ξ)2 =

∞∫

−∞

ξ2|f̂(ξ)|2 dξ
2π
.

The Parseval formula implies that

(∆ξ)2 =

∞∫

−∞

|∂xf(x)|2dx.

The basic result is

Theorem 4.4.2 (The Heisenberg uncertainty principle). If f and ∂xf belong to
L2(R) then

∞∫

−∞

|x|2|f(x)|2dx
∞∫

−∞

|ξ|2|f̂(ξ)|2 dξ
2π
≥ 1

4



∞∫

−∞

|f(x)|2



2

dx. (4.51)

Because the product of the variances has a lower bound, this means that we cannot
localize the position and the momentum of a particle, arbitrarily well at the same time.
The proof of this theorem is a simple integration by parts followed by an application of the
Cauchy-Schwarz inequality.

Proof. If f decays sufficiently rapidly, we can integration by parts to obtain that

∞∫

−∞

xffxdx =
1

2
(xf2)

∣∣∣∣
∞

−∞

−
∞∫

−∞

1

2
f2dx

= −1
2

∞∫

−∞

f2.

(4.52)

The Cauchy-Schwarz inequality implies that

∣∣∣∣∣∣

∞∫

−∞

xffxdx

∣∣∣∣∣∣
≤



∞∫

−∞

x2|f |2dx




1
2



∞∫

−∞

|fx|2dx




1
2

Using (4.52), the Parseval formula and this estimate we obtain

1

2

∞∫

−∞

|f |2dx ≤



∞∫

−∞

x2|f |2dx




1
2


 1

2π

∞∫

−∞

ξ2|f̂ |2dx




1
2

. (4.53)
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With the expected position and momentum normalized to be zero, the variance in the
position and momentum are given by

∆x =




∞∫

−∞

x2f2




1/2

and ∆ξ =




∞∫

−∞

f2
x




1/2

.

The estimate (4.53) is equivalent to ∆x ·∆ξ ≥ 1
2 . If a, b are non-negative numbers then the

arithmetic mean-geometric inequality states that

ab ≤ a2 + b2

2
.

Combining this with the Heisenberg uncertainty principle shows that

1 ≤ (∆x)2 + (∆ξ)2.

That is
∞∫

−∞

f2dx ≤
∞∫

−∞

x2f2 + f2
xdx. (4.54)

The inequality (4.54) becomes an equality if we use the Gaussian function f(x) = e−
x2

2 .
A reason why the Gaussian is often used to smooth measured data is that it provides the
optimal resolution (in the L2-norm) for a given amount of de-noising.

Exercises

Exercise 4.4.3. Show that both (4.51) and (4.54) are equalities if f = e−
x2

2 . Can you show
that the only functions for which this is true are multiples of f?

4.4.3 The Paley-Wiener theorem

In imaging applications one usually works with functions of bounded support. The question
naturally arises whether it is possible to recognize such a function from its Fourier transform.
There are a variety of theorems which relate the support of a function to properties of its
Fourier transform. They go collectively by the name of Paley-Wiener theorems.

Theorem 4.4.3 (Paley-Wiener Theorem I). A square-integrable function f satisfies

f(x) = 0 for |x| > L if and only if its Fourier transform f̂ extends to be an analytic function
in the whole complex plane that satisfies

∞∫

−∞

|f̂(ξ + iτ)|2dξ ≤Me2L|τ | for all τ and

|f̂(ξ + iτ)| ≤ MeL|τ |√
|τ |

(4.55)
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Proof. The proof of the forward implication is elementary. The Fourier transform of f is given by
an integral over a finite interval,

f̂(ξ) =

L∫

−L

f(x)e−ixξdξ. (4.56)

The expression clearly makes sense if ξ is replaced by ξ + iτ, and differentiating under the integral

shows that f̂(ξ + iτ) is a analytic function. The first estimate follows from the Parseval formula as

f̂(ξ+iτ) is the Fourier transform of the L2-function f(x)e−τx. Using the Cauchy Schwartz inequality
we obtain

|f̂(ξ + iτ)| =

∣∣∣∣∣∣

L∫

−L

f(x)e−ixξ−xτdx

∣∣∣∣∣∣

≤ eL|τ |√
|τ |

√√√√√
L∫

−L

|f(x)|2dx;

(4.57)

from which the estimate is immediate.
The proof of the converse statement is a little more involved; it uses the Fourier inversion formula

and a change of contour. We outline of this argument, the complete justification for the change of
contour can be found in [40]. Let x > L > 0, the Fourier inversion formula states that

f(x) =
1

2π

∞∫

−∞

f̂(ξ)eixξdξ.

Since f̂(z)eixz is an analytic function, satisfying appropriate estimates, we can shift the integration
to the line ξ + iτ for any τ > 0,

f(x) =
1

2π

∞∫

−∞

f̂(ξ + iτ)e−xτeixξdξ.

In light of the first estimate in (4.55), we obtain the bound

|f(x)| ≤Me(L−x)τ .

Letting τ tend to infinity shows that f(x) = 0 for x > L. A similar argument using τ < 0 shows
that f(x) = 0 if x < −L.

For later applications we state a variant of this result whose proof can be found in [40].

Theorem 4.4.4 (Paley-Wiener II). A function f ∈ L2(R) has an analytic extension
F (x+ iy) to the upper half plane (y > 0) satisfying

∞∫

−∞

|F (x+ iy)|2dx ≤M,

lim
y↓0

∞∫

−∞

|F (x+ iy)− f(x)|2 = 0

(4.58)

if and only if f̂(ξ) = 0 for ξ < 0.
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4.4.4 The Fourier transform of generalized functions

See: A.5.6.

Initially the Fourier transform is defined for absolutely integrable functions, by an ex-
plicit formula (4.3). It is then extended, in definition (4.2.5), to L2-functions by using its
continuity properties. The Parseval formula implies that the Fourier transform is a contin-
uous map from L2(R) to itself, indeed it is an invertible, isometry. For an L2-function, the
Fourier transform is not defined by an integral, nonetheless the Fourier transform on L2(R)
shares all the important properties of the Fourier transform defined earlier for absolutely
integrable functions.

It is reasonable to seek the largest class of functions to which the Fourier transform
can be extended. In turns out that the answer is not a class of functions, but rather the
generalized functions (or tempered distributions) defined in section A.5.6. In the discussion
which follows we assume a familiarity with this section! The definition of the Fourier trans-
form on generalized functions closely follows the pattern of the definition of the derivative
of a generalized function, with the result again a generalized function. To accomplish this
extension we need to revisit the definition of a generalized function. In section A.5.6 we
gave the following definition:

Let C∞c (R) denote infinitely differentiable functions defined on R which vanish outside of bounded
sets. These are called test functions.

Definition 4.4.1. A generalized function on R is a linear function, l defined on the set of test
functions such that there is a constant C and an integer k so that, for every f ∈ C∞c (R) we have
the estimate

|l(f)| ≤ C sup
x∈R


(1 + |x|)k

k∑

j=0

|∂jxf(x)|


 (4.59)

These are linear functions on C∞c (R) which are, in a certain sense continuous. The constants C
and k in (4.59) depend on l but not on f. The expression on the right hand side defines a norm on
C∞c (R), for convenience we let

‖f‖k = sup
x∈R


(1 + |x|)k

k∑

j=0

|∂jxf(x)|


 .

The observation that we make is the following: if a generalized function satisfies the
estimate

|l(f)| ≤ C‖f‖k
then it can be extended, by continuity, to any function f which is the limit of a sequence
< fn >⊂ C∞c (R) in the sense that

lim
n→∞

‖f − fn‖k = 0.

Clearly f ∈ Ck(R) and ‖f‖k <∞. This motivates the following definition

Definition 4.4.2. A function f ∈ C∞(R) belongs to Schwartz class if ‖f‖k <∞ for every
k ∈ N. The set of such functions is a vector space denoted by S(R).
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From the definition it is clear that

C∞c (R) ⊂ S(R). (4.60)

Schwartz class does not have a norm with respect to which it is a complete normed linear
space, instead each ‖ · ‖k defines a semi-norm. A sequence < fn >⊂ S(R) converges to
f ∈ S(R) if and only if

lim
n→∞

‖f − fn‖k = 0 for every k ∈ N.

With this notion of convergence, Schwartz class becomes a complete metric space, the
distance is defined by

dS(f, g) =
∞∑

j=0

2−j
‖f − g‖j

1 + ‖f − g‖j
.

Remark 4.4.3. Of course each ‖ · ‖k satisfies all the axioms for a norm. They are called
“semi-norms” because each one alone, does not define the topology on S(R).

Let ϕ(x) ∈ C∞c (R) be a non-negative function with the following properties

(1). ϕ(x) = 1 if x ∈ [−1, 1],

(2). ϕ(x) = 0 if |x| > 2.

Define ϕn(x) = ϕ(n−1x), it is not difficult to prove the following proposition.

Proposition 4.4.2. If f ∈ S(R) then fn = ϕnf ∈ C∞c (R) ⊂ S(R) converges to f in S(R).
That is

lim
n→∞

‖fn − f‖k = 0 for every k. (4.61)

The proof is left as an exercise.
From the discussion above it therefore follows that every generalized function can be

extended to S(R). Because (4.61) holds for every k, if l is a generalized function and
f ∈ S(R) then l(f) is defined as

l(f) = lim
n→∞

l(ϕnf).

To show that this makes sense, it is only necessary to prove that if < gn >⊂ C∞c (R) which
converges to f in Schwartz class then

lim
n→∞

l(gn − ϕnf) = 0. (4.62)

This is an immediate consequence of the triangle inequality and the estimate that l satisfies:
there is a C and k so that

|l(gn − ϕnf)| ≤ C‖gn − ϕnf‖k
≤ C[‖gn − f‖k + ‖f − ϕnf‖k].

(4.63)

Since both terms on the right hand side of the second line tend to zero as n → ∞, equa-
tion (4.62) is proved. In fact the generalized functions are exactly the set of continuous
linear functions on S(R). For this reason the set of generalized functions is usually denoted
by S ′(R).
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Why did we go to all this trouble? How will this help extend the Fourier transform
to S ′(R)? The integration by parts formula was the “trick” used to extend the notion of
derivative to generalized functions. The reason it works is that if f ∈ S(R) then ∂xf ∈ S(R)
as well. This implies that l(∂xf) is a generalized function whenever l itself is. The Schwartz
class has a similar property vis á vis the Fourier transform.

Theorem 4.4.5. The Fourier transform is an isomorphism of S(R) onto itself, that is if
f ∈ S(R) then both F(f) and F−1(f) also belong to S(R). Moreover, for each k there is an
k′ and constant Ck so that

‖F(f)‖k ≤ Ck‖f‖k′ for all f ∈ S(R). (4.64)

The proof of this theorem is an easy consequence of results in section 4.2.4. We give
the proof for F , the proof for F−1 is essentially identical.

Proof. Since f ∈ S(R) for any j, k ∈ N ∪ {0} we have the estimates

|∂jxf(x)| ≤
‖f‖k

(1 + |x|)k . (4.65)

From Propositions 4.2.1 and 4.2.3 it follows that f̂ is infinitely differentiable and that, for any k, j,

sup
ξ∈R

|ξ|k|∂jξ f̂(ξ)| <∞.

To prove this we use the formula

ξk∂jξ f̂(ξ) =

∞∫

−∞

(i∂x)
k
[
(−ix)jf(x)

]
e−ixξdx.

Because f ∈ S(R) the integrand is absolutely integrable and in fact if m = max{j, k} then

|ξk∂jξ f̂(ξ)| ≤ Ck,l‖f‖m+2, (4.66)

here Ck,l depends only on k and l. This completes the proof.

Instead of integration by parts, we now use this theorem and the identity

∞∫

−∞

f(x)ĝ(x)dx =

∞∫

−∞

f̂(x)g(x)dx, (4.67)

to extend the Fourier transform to generalized functions. The identity follows by a simple
change in the order of integrations which is easily justified if f, g ∈ S(R). It is now clear
how we should define the Fourier transform of a generalized function.

Definition 4.4.3. If l ∈ S ′(R) then the Fourier transform of l is the generalized function

l̂ defined by
l̂(f) = l(f̂) for all f ∈ S(R). (4.68)

Theorem 4.4.5 implies that f̂ ∈ S(R) so that the right hand side in (4.68) defines a gener-
alized function.
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But why did we need to extend the definition of generalized functions from C∞c (R)
to S(R)? The answer is simple: if 0 6= f ∈ C∞c (R) then Proposition 4.4.1 implies that

f̂ /∈ C∞c (R). This would prevent using (4.68) to define l̂ because we would not know that

l(f̂) made sense! This appears to be a rather abstract definition and it is not at all clear
that it can be used to compute the Fourier transform of a generalized function. In fact,
there are many distributions whose Fourier transforms can be explicitly computed.

Example 4.4.1. If ϕ is an absolutely integrable function then

l̂ϕ = lϕ̂.

If f ∈ S(R) then the identity in (4.67) holds with g = ϕ̂, as a simple interchange of
integrations shows. Hence, for all f ∈ S(R)

lϕ(f̂) =

∞∫

−∞

f(x)ϕ̂(x)dx = lϕ̂(f).

This shows that the Fourier transform for generalized functions is indeed an extension of
the ordinary transform: if a generalized function l is represented by an integrable function
in the sense that l = lϕ then the definition of the Fourier transform of l is consistent with
the earlier definition of the Fourier transform of ϕ.

Example 4.4.2. If f ∈ S(R) then

f̂(0) =

∞∫

−∞

f(x)dx.

This shows that δ̂ = l1 which is represented by an ordinary function equal to the constant
1.

Example 4.4.3. On the other hand the Fourier inversion formula implies that

∞∫

−∞

f̂(ξ)dξ = 2πf(0)

and therefore l̂1 = 2πδ. This is an example of an ordinary function that does not have
a Fourier transform, in the usual sense, and whose Fourier transform, as a generalized
function is not an ordinary function.

Recall that a sequence < ln >⊂ S ′(R) converges to l in S ′(R) provided that

l(g) = lim
n→∞

ln(g) for all g ∈ S(R). (4.69)

This is very useful for computing Fourier transforms because the Fourier transform is con-
tinuous with respect to the limit in (4.69). It follows from the definition that:

l̂n(g) = ln(ĝ) (4.70)

and therefore
lim
n→∞

l̂n(g) = lim
n→∞

ln(ĝ) = l(ĝ) = l̂(g). (4.71)
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Example 4.4.4. The generalized function lχ[0,∞)
can be defined as a limit by

lχ[0,∞)
(f) = lim

ε↓0

∞∫

0

e−εxf(x)dx.

The Fourier transform of le−εxχ[0,∞)
is easily computed using example 4.4.1, it is

F(le−εxχ[0,∞)
)(f) =

∞∫

−∞

f(x)dx

ix+ ε
.

This shows that

F(lχ[0,∞)
)(f) = lim

ε↓0

∞∫

−∞

f(x)dx

ix+ ε
. (4.72)

In fact, it proves that the limit on the right hand side exists!

We close this discussion by verifying that the Fourier transform on generalized functions
has many of the properties of the ordinary Fourier transform. Recall that if l is a generalized
function and f is an infinitely differentiable function which satisfies estimates

|∂jxf(x)| ≤ Cj(1 + |x|)k,

for a fixed k then the product f · l is defined by

f · l(g) = l(fg).

If l ∈ S ′(R) then so are all of its derivatives. Using the definition it is not difficult to find
formulæ for F(l[j]) :

F(l[j])(f) = l[j](f̂) = (−1)jl(∂jxf̂) = l((̂ix)jf). (4.73)

This shows that
F(l[j]) = (ix)j · l̂. (4.74)

A similar calculation shows that

F((−ix)j · l) = l̂[j]. (4.75)

Exercises

Exercise 4.4.4. Prove (4.60).

Exercise 4.4.5. Prove that dS defines a metric. Show that a sequence < fn > converges
in S(R) to f if and only if

lim
n→∞

dS(fn, f) = 0.

Exercise 4.4.6. Prove Proposition 4.4.2.
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Exercise 4.4.7. Prove (4.67). What is the “minimal” hypothesis on f and g so this formula
makes sense, as absolutely convergent integrals.

Exercise 4.4.8. Give a detailed proof of (4.66).

Exercise 4.4.9. Prove, by direct computation that the limit on the right hand side of (4.72)
exists for any f ∈ S(R).

Exercise 4.4.10. If l1/x is the Cauchy principal value integral

l1/x(f) = P.V.

∞∫

−∞

f(x)dx

x

then show that F(l1/x) = lsignx.

Exercise 4.4.11. Prove (4.75).

Exercise 4.4.12. The inverse Fourier transform of a generalized function is defined by

[F−1(l)](g) = l(F−1(g)).

Show that F−1(l̂) = l = F̂−1(l).

4.5 The Fourier transform for functions of several variables.

The Fourier transform can also be defined for functions of several variables. This section
presents the definition and some of the elementary properties of the Fourier transform for
functions in L1(Rn) and L2(Rn). In most ways it is quite similar to the one dimensional
theory. A notable difference are discussed in section 4.5.5.

Recall that we use lower case, bold Roman letters x,y, etc. to denote points in Rn,
that is

x = (x1, . . . , xn) or y = (y1, . . . , yn).

In this case xj is called the jth-coordinate of x. The Fourier transform of a function of
n-variables is also a function of n-variables. It is customary to use the lower case, bold
Greek letters, ξξξ or ηηη for points on the Fourier transform space with

ξξξ = (ξ1, . . . , ξn) or ηηη = (η1, . . . , ηn).

The volume form on Fourier space is denoted dξξξ = dξ1 . . . dξn.

4.5.1 L1-case

As before we begin with the technically simpler case of absolutely integrable functions.

Definition 4.5.1. If f belongs to L1(Rn) then the Fourier transform, f̂ of f is defined by

f̂(ξξξ) =

∫

Rn

f(x)e−i〈ξξξ,x〉dx for ξξξ ∈ Rn. (4.76)
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Since f is absolutely integrable over Rn the integral can be computed as an iterated
integral

∫

Rn

f(x)e−i〈ξξξ,x〉dx =

∞∫

−∞

· · ·
∞∫

−∞

f(x1, . . . , xn)e
−ix1ξ1dx1 · · · e−ixnξndxn; (4.77)

changing the order of the one dimensional integrals does not change the result. When
thought of as a linear mapping, it is customary to use F(f) to denote the Fourier transform
of f.

Using a geometric picture for the inner product leads to a better understanding of the
functions ei〈ξξξ,x〉. To that end we write ξξξ in polar form as ξξξ = rωωω. Here r = ‖ξξξ‖ is the length
of ξξξ and ωωω its direction. Write x = x′ + tωωω where x′ is orthogonal to ωωω, (i.e. 〈x′,ωωω〉 = 0).
As 〈x,ωωω〉 = t the function 〈x,ωωω〉 depends only t. Thus

ei〈x,ξξξ〉 = eirt.

This function oscillates in the ωωω-direction with wave length 2π
r . To illustrate this we give a

density plot in the plane of the real and imaginary parts of

ei〈x,ξξξ〉 = cos〈x, ξξξ〉+ i sin〈x, ξξξ〉

for several choices of ξξξ. In these figures white corresponds to +1 and black corresponds to
−1. The Fourier transform at ξξξ = rωωω can be re-expressed as

f̂(rωωω) =

∞∫

−∞

∫

L

f(x′ + tωωω)e−irtdx′dt. (4.78)

Here L is the (n− 1)-dimensional subspace of Rn orthogonal to ωωω :

L = {x′ ∈ Rn : 〈x′,ωωω〉 = 0}

and dx′ is the (n− 1)-dimensional Euclidean measure on L.
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Figure 4.3: Real and imaginary parts of exp(i〈(x, y), (1, 1)〉)
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Figure 4.4: Real and imaginary parts of exp(i〈(x, y), (2, 0)〉)

The Fourier transform is invertible; under appropriate hypotheses there is an explicit
formula for the inverse.

Theorem 4.5.1 (Fourier Inversion Formula). Suppose that f is an absolutely integrable

function defined on Rn. If f̂ also belongs to L1(Rn) then

f(x) =
1

[2π]n

∫

Rn

f̂(ξξξ)eix·ξξξdξξξ. (4.79)

Proof. The proof is formally identical to the proof of the one dimensional result. As before we begin
by assuming that f is continuous. The basic fact used is that the Fourier transform of a Gaussian
can be computed explicitly:

F(e−ε‖x‖2) =
[π
ε

]n
2

e−
‖x‖
4ε . (4.80)

Because f̂ is absolutely integrable

1

[2π]n

∫

Rn

f̂(ξξξ)eix·ξξξdξξξ = lim
ε↓0

1

[2π]n

∫

Rn

f̂(ξξξ)eix·ξξξe−ε‖ξξξ‖
2

dξξξ

= lim
ε↓0

1

[2π]n

∫

Rn

∫

Rn

f(y)e−iy·ξξξdyeix·ξξξe−ε‖ξξξ‖
2

dξξξ.

(4.81)

The order of the integrations in the last line can be interchanged; using (4.80) gives,

1

[2π]n

∫

Rn

f̂(ξξξ)eix·ξξξdξξξ = lim
ε↓0

1

[2π]n

∫

Rn

f(y)
[π
ε

]n
2

e−
‖x−y‖2

4ε dy

= lim
ε↓0

1

[2π]
n
2

∫

Rn

f(x− 2
√
εt)e−‖t‖

2

dt.

(4.82)

In the last line we use the change of variables y = x − 2√εt. As f is continuous and absolutely
integrable this converges to

f(x)

[2π]
n
2

∫

Rn

e−‖t‖
2

dt.
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Since ∫

Rn

e−‖t‖
2

dt = [2π]
n
2 ,

this completes the proof of the theorem for continuous functions. As in the one-dimensional case,
an approximation argument is used to remove the additional hypothesis. The details are left to the
reader.

Exercises

Exercise 4.5.1. Prove formula (4.78).

Exercise 4.5.2. If g1(x), . . . , gn(x) belong to L1(R) show that

f(x1, . . . , xn) = g1(x1) · · · gn(xn) ∈ L1(Rn).

Show that
f̂(ξ1, . . . , ξn) = ĝ1(ξ1) · · · ĝn(ξn).

Use this to compute the Fourier transform of e−‖x‖
2
.

4.5.2 Regularity and decay

There is once again a close connection between the smoothness of function and the decay
of its Fourier transform and vice versa. A convenient way to quantify the smoothness of
a function on Rn is in terms of the existence of partial derivatives. Formulæ in several
variables which involve derivatives can rapidly become cumbersome and unreadable. For-
tunately there is a compact notation, called multi-index notation, giving n-variable formulæ
with the simplicity and readability of the one-variable case.

Definition 4.5.2. A multi-index is an ordered n-tuple of non-negative integers usually
denoted by a lower case Greek letter. For ααα = (α1, . . . , αn), a multi-index, set

ααα! = α1! · · ·αn! and |ααα| = α1 + · · ·+ αn.

The function |ααα| is called the length of ααα. The following conventions are useful:

xααα = xα1
1 xα2

2 · · ·xαnn and ∂αααx = ∂α1
x1
∂α2
x2
· · · ∂αnxn .

Example 4.5.1. The binomial formula has an n-dimensional analogue:

(x1 + · · ·+ xn)
k = k!

∑

{ααα : |ααα|=k}

xααα

ααα!
.

Example 4.5.2. If f is a k-times differentiable function on Rn then there is also a n-
dimensional analogue of Taylor’s formula:

f(x) =
∑

{ααα : |ααα|≤k}

∂αααxf(0)x
ααα

ααα!
+Rk(x). (4.83)

Here Rk is the remainder term; it satisfies

lim
‖x‖→0

|Rk(x)|
‖x‖k = 0.



4.5. FUNCTIONS OF SEVERAL VARIABLES 123

As in the one dimensional case, the most general decay result is the Riemann-Lebesgue
Lemma.

Proposition 4.5.1 (Riemann-Lebesgue Lemma). Let f be an absolutely integrable

function on Rn then f̂ is a continuous function and lim|ξξξ|→∞ f̂(ξξξ) = 0.

The proof is very similar to the one dimensional case and is left to the reader.
The smoothness of f is reflected in the decay properties of its Fourier transform. Sup-

pose that f is continuous and has a continuous partial derivative in the xj-direction which
is integrable, i.e. ∫

Rn

|∂xjf |dx <∞.

For notational convenience we suppose that j = 1 and set x = (x1,x
′). For any finite limits

R,R1, R2 we can integrate by parts in the x1-variable to obtain

R2∫

−R1

∫

‖x′‖<R

f(x1,x
′)e−i〈x,ξξξ〉dx′dx1 =

[
1

−iξ1

] [ ∫

‖x′‖<R

[f(R2,x
′)− f(−R1,x

′)]e−i〈x,ξξξ〉dx′−

R2∫

−R1

∫

‖x′‖<R

∂x1f(x1,x
′)e−i〈x,ξξξ〉dx′dx1

]
.

(4.84)

Because ∂x1f is integrable the second integral on the right hand side of (4.84) tends to
F(∂x1f) as R,R1, R2 tend to ∞. The boundary terms are bounded by

∫

Rn−1

[|f(R2,x
′)|+ |f(−R1,x

′)|]dx′.

As f is absolutely integrable there exist sequences < Rk1 >,< Rk2 > tending to infinity so
that these (n− 1)-dimensional integrals tend to zero. This shows that F(∂x1f) = iξ1F(f).
The same argument applies to any coordinate proving the following proposition.

Proposition 4.5.2. If f is an absolutely integrable, continuous function with an absolutely
integrable, continuous jth-partial derivative then

F(∂xjf)(ξξξ) = iξjF(f)(ξξξ).

There is a constant C such that if f has a continuous, integrable gradient then f̂ satisfies
the estimate

|f̂(ξξξ)| ≤
C

∫
Rn

[|f |+ |∇f‖]dx

(1 + ‖ξξξ‖) .

The integration by parts argument can be iterated to obtain formulæ for the Fourier
transform of ∂αααxf for any multi-index ααα.
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Theorem 4.5.2. Suppose that f is an absolutely integrable, continuous function with con-
tinuous, absolutely integrable αααth-partial derivatives for any ααα with |ααα| < k. Then there
exists a constant C so that

|f̂(ξξξ)| ≤ C

(1 + ‖ξξξ‖)k ,

and for each such ααα we have

∂̂αααxf(ξξξ) = (iξξξ)αααf̂(ξξξ).

The theorem relates the rate of decay of the Fourier transform to the smoothness of f.
As in the one dimensional case, this theorem has a partial converse.

Proposition 4.5.3. Suppose that f is an integrable function on Rn such that, for an ε > 0,
a non-negative integer k, and a constant C

|f̂(ξξξ)| ≤ C

(1 + ‖ξξξ‖)k+n+ε
<∞.

Then f has k-continuous derivatives which tend to zero at infinity.

Proof. The proof is a consequence of the Fourier inversion formula. The decay hypothesis implies
that

f(x) =
1

[2π]n

∫

Rn

f̂(ξξξ)eix·ξξξdξξξ.

The estimate satisfied by f̂ implies that this expression can be differentiated up to k-times. Hence

the Fourier transform of ∂αααx f is (iξξξ)
αf̂(ξξξ). Because F(∂αααx f) is an L1-function, the last statement

follows from the Riemann-Lebesgue lemma.

Remark 4.5.1. It is apparent that the discrepancy between this estimate and that in The-
orem 4.5.2 grows as the dimension increases. As in the one-dimensional case, more natural
and precise results are obtained by using weak derivatives and the L2-norm. As these results
are not needed in the rest of the book, we will not pursue this direction. The interested
reader should consult [17].

In order to understand how decay at infinity for f is reflected in properties of f̂ we first
suppose that f vanishes outside the ball of radius R. It can be shown without difficulty
that f̂(ξξξ) is a differentiable function, and its partial derivatives are given by

∂ξξξj f̂(ξξξ) =

∫

BR

∂ξj [f(x)e
−iξξξ·x]dx =

∫

BR

f(x)(−ixj)e−iξξξ·xdx = F(−ixjf)(ξξξ). (4.85)

Iterating (4.85) gives

∂αααξξξ f̂(ξξξ) = (−i)|ααα|
∫

Rn

xαααf(x)e−iξξξ·xdx = (−i)|ααα|F(xαααf)(ξξξ). (4.86)

If instead of assuming that f has bounded support, we assume that (1 + ‖x‖)kf is inte-

grable then a standard limiting argument shows that f̂ is k times differentiable and the αααth

derivative is given by the right hand side of (4.86).
Summarizing these computations we have:
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Proposition 4.5.4. If (1+ ‖x‖)kf is absolutely integrable for a positive integer k then the

Fourier transform of f has k continuous derivatives. The partial derivatives of f̂ are given
by

∂αααξξξ f̂(ξξξ) = (−i)|ααα|F(xαααf)(ξ).

They satisfy the estimates

|∂αααξξξ f̂(ξξξ)| ≤
∫

Rn

‖x‖|α||f(x)|dx,

and tend to zero as ‖ξξξ‖ tends to infinity.

Exercises

Exercise 4.5.3. Suppose that f is in L1(Rn). Show that there exist sequences < an >
tending to ±∞ so that

lim
n→∞

∫

Rn−1

|f(an,x′)|dx′.

Exercise 4.5.4. Suppose that f is an integrable function which vanishes outside the ball
of radius R. Show that f̂ is a differentiable function and justify the interchange of the
derivative and the integral in (4.85).

Exercise 4.5.5. Suppose that f is an integrable function which vanishes outside the ball
of radius R. Show that f̂ is an infinitely differentiable function.

Exercise 4.5.6. Give the details of the limiting argument used to pass from (4.86) with f
of bounded support to the conclusion of Proposition 4.5.4.

Exercise 4.5.7. Prove the n-variable binomial formula.

Exercise 4.5.8. Explain the dependence on the dimension in the hypothesis of Proposi-
tion 4.5.3.

Exercise 4.5.9. Find a function f of n-variables so that

|f̂(ξξξ)| ≤ C

(1 + ‖ξξξ‖)n

but f is not continuous.

4.5.3 L2-theory

See: A.5.6, A.5.5.

As in the 1-dimensional case, the n-dimensional Fourier transform extends to square-
integrable functions. The basic result is the Parseval formula.
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Theorem 4.5.3 (Parseval formula). If f is absolutely integrable and
∫

Rn |f(x)|2dx <∞,
then ∫

Rn

|f(x)|2dx =
1

[2π]n

∫

Rn

|f̂(ξξξ)|2dξξξ. (4.87)

The proof is quite similar to the one dimensional case. It uses an approximation argument
and the identity, valid for absolutely integrable functions:

∫

Rn

f(x)ĝ(x)dx =

∫

Rn

f(x)

∫

Rn

e−ix·yg(y)dydx =

∫

Rn

f̂(y)g(y)dy. (4.88)

The details are left to reader.
As in the single variable case the Fourier transform is extended to L2(Rn) by continuity.

As before we set

f̂R(ξξξ) =

∫

‖x‖<R

f(x)e−iξξξ·xdx.

Parseval’s formula implies that

‖f̂R‖L2 ≤ ‖χBR
f‖L2 .

Because L2(Rn) is complete and L2-functions with bounded support are dense in L2 it
follows from Theorem 4.2.3 that the Fourier transform of f can be defined as the L2-limit

f̂ = LIM
R→∞

f̂R.

Moreover the Parseval formula extends to all functions in L2(Rn). This shows that the
Fourier transform is a continuous mapping of L2(Rn) to itself: if < fn > is a sequence with
LIM
n→∞

fn = f then

LIM
n→∞

f̂n = f̂ .

The L2-inversion formula is also a consequence of the Parseval formula.

Proposition 4.5.5 (L2-inversion formula). Let f ∈ L2(Rn) and define

fR(x) =
1

[2π]n

∫

‖ξξξ‖<R

f̂(ξξξ)eix·ξξξdξξξ,

then f = LIM
R→∞

FR.

Proof. We need to show that limR→∞ ‖fR − f‖L2 = 0. Because the norm is defined by an inner
product we have

‖fR − f‖2L2 = ‖fR‖2L2 − 2Re〈fR, f〉L2 + ‖f‖L2 .

The Parseval formula implies that

‖fR‖2L2 =
1

[2π]n

∫

‖ξξξ‖<R

|f̂(ξξξ)|2dξξξ and ‖f‖2L2 =
1

[2π]n

∫

Rn

|f̂(ξξξ)|2dξξξ.

The proof is completed by using the following lemma.
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Lemma 4.5.1. Let g ∈ L2(Rn) then

〈fR, g〉 =
1

[2π]n

∫

‖ξξξ‖<R

f̂(ξξξ)ĝ(ξξξ)dξξξ. (4.89)

The proof of the lemma is a consequence of the Parseval formula, it is left as an exercise for the
reader. Using (4.89) gives

‖fR − f‖2L2 =
1

[2π]n

∫

‖ξξξ‖≥R

|f̂(ξξξ)|2dξξξ.

This implies that LIM
R→∞

FR = f.

Remark 4.5.2. The extension of the Fourier transform to functions in L2(Rn) has many
nice properties. In particular the range of the Fourier transform on L2 is exactly L2(Rn).
However the formula for the Fourier transform as an integral is purely symbolic. The Fourier
transform itself is only defined as a LIM ; for a given ξξξ the pointwise limit

lim
R→∞

∫

‖x‖<R

f(x)−ix·ξξξdx

may or may not exist.

We conclude this section with an enumeration of the elementary properties of the
Fourier transform for functions of n-variables. As before these hold for integrable or square-
integable functions and follow from elementary properties of the integral.

1. Linearity:
The Fourier transform is a linear operation, if α ∈ C then

F(f + g) = F(f) + F(g), F(αf) = αF(f).

2. Scaling:
The Fourier transform of f(ax), a function dilated by a ∈ R is given by

∫

Rn

f(ax)e−iξξξ·xdx =

∫

Rn

f(y)e−i
ξξξ·y
a
dy

an

=
1

an
f̂(
ξξξ

a
).

(4.90)

3. Translation:
Let ft be the function f shifted by the vector t, ft(x) = f(x − t). The Fourier
transform of ft(ξξξ) is given by

f̂t(ξξξ) =

∫

Rn

f(x− t)e−iξξξ·xdx

=

∫

Rn

f(y)e−iξξξ·(y+t)dy

= e−iξξξ·tf̂(ξξξ).

(4.91)
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4. Reality:

If f(x) is real valued then f̂(ξξξ) = f̂(−ξξξ).

5. Evenness:
If f is even then f̂ is real valued, if f is odd then f̂ is purely imaginary valued.

Exercises

Exercise 4.5.10. Give the details of the proof of the n-dimensional Parseval formula.

Exercise 4.5.11. Show that (4.87) implies that

∫

Rn

f(x)g(x)dx =

∫

Rn

f̂(ξξξ)ĝ(ξξξ)
dξξξ

[2π]n
.

Exercise 4.5.12. Prove Lemma 4.5.1.

Exercise 4.5.13. Verify properties (4) and (5).

Exercise 4.5.14. Prove that the Fourier transform of a radial function is also a radial
function and formula (4.92).

4.5.4 The Fourier transform on radial functions

Recall that a function which only depends on ‖x‖ is said to be radial. The Fourier transform
of a radial function is also radial and can be given by a 1-dimensional integral transform.

Theorem 4.5.4. Suppose that f(x) = F (‖x‖) is an integrable function, then the Fourier
transform of f is given by the one-dimensional integral transform

f̂(ξξξ) =
cn

‖ξξξ‖n−2
2

∞∫

0

Jn−2
2
(r‖ξξξ‖)F (r)r n

2 dr. (4.92)

Here cn is a constant depending on the dimension.

If Re(ν) > − 1
2 then Jν(z), the order ν Bessel function is defined by the integral

Jν(z) =

(
z
2

)ν

Γ
(
ν + 1

2

)
Γ
(

1
2

)
π∫

0

eiz cos(θ) sin2ν(θ)dθ.

Proof. The derivation of (4.92) uses polar coordinates on Rn. Let x = rωωω where r is a non-negative
number and ωωω belongs to the unit (n − 1)-sphere, Sn−1. In these coordinates the volume form on
Rn is

dx = rn−1drdVSn−1 ,

here dVSn−1 is the volume form on Sn−1. In polar coordinates, the Fourier transform of f is given
by

f̂(ξξξ) =

∞∫

0

∫

Sn−1

F (r)e−ir〈ωωω,ξξξ〉dVSn−1rn−1dr. (4.93)
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It not difficult to show that the integral over Sn−1 only depends on ‖ξξξ‖ and therefore it suffices to
evaluate it for ξξξ = (0, . . . , 0, ‖ξξξ‖). Points on the (n− 1)-sphere can be expressed in the form

ωωω = sin θ(ωωω′, 0) + (0, . . . , 0, cos θ),

where ωωω′ is a point on the unit (n − 2)-sphere and θ ∈ [0, π]. Using this parametrization for Sn−1

we obtain a formula for the volume form,

dVSn−1 = sinn−2 θdVSn−2 . (4.94)

Using these observations, the spherical integral in (4.93) becomes

∫

Sn−1

e−ir〈ωωω,ξξξ〉dVSn−1 =

π∫

0

∫

Sn−2

e−ir‖ξξξ‖ cos θ sinn−2 θdVSn−2dθ

= σn−2

π∫

0

e−ir‖ξξξ‖ cos θ sinn−2 θdθ.

(4.95)

The coefficient σn−2 is the (n − 2)-dimensional volume of Sn−2. Comparing this integral with the
definition of the Bessel function gives (4.92).

Example 4.5.3. The Fourier transform of the characteristic function of the unit ball B1 ⊂ Rn

is given by the radial integral

χ̂B1(ξξξ) =
cn

‖ξξξ‖n−2
2

1∫

0

Jn−2
2
(r‖ξξξ‖)r n

2 dr.

Using formula 6.561.5 in [20] gives

χ̂B1(ξξξ) =
cn

‖ξξξ‖n
2

Jn
2
(‖ξξξ‖).

As ‖ξξξ‖ tends to infinity the Bessel function is a oscillatory term times [
√
‖ξξξ‖]−1. Overall

we have the estimate

χ̂B1(ξξξ) ≤
C

(1 + ‖ξξξ‖)n+1
2

.

Exercises

Exercise 4.5.15. Prove that the spherical integral in (4.93) only depends on ‖ξξξ‖.
Exercise 4.5.16. Verify the parametrization of the (n − 1)-sphere used to obtain (4.94)
as well as this formula.

Exercise 4.5.17. Determine the constant cn in (4.92).

Exercise 4.5.18. Using (4.94) show that σn the n-volume of Sn is given by

σn =
2π

n+1
2

Γ
(
n+1

2

) .

Exercise 4.5.19. Using the connection between the one-dimensional integral transform
defined in (4.92) and the n-dimensional Fourier transform, find a formula for the inverse of
this transform. Hint: Use symmetry, this does not require any computation!
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4.5.5 The failure of localization in higher dimensions∗

The localization principle is a remarkable feature of the 1-dimensional Fourier transform.
Suppose that f is an integrable function defined on R. According to the localization principle
the convergence of the partial inverse

fR(x) =
1

2π

R∫

−R

f̂(ξ)eixξdξ

to f(x) only depends on the behavior of f in an interval about x. This is a uniquely
one dimensional phenomenon. In this section we give an example due to Pinsky showing
the failure of the localization principle in three dimensions. A complete discussion of this
phenomenon can be found in [57].

Pinsky’s example is very simple, it concerns f(x) = χB1(x), the characteristic function
of the unit ball. The Fourier transform of f was computed in example 4.5.3, it is

f̂(ξξξ) =
cJ 3

2
(‖ξξξ‖)

‖ξξξ‖ 3
2

.

In this example c denotes various positive constants. Using formula 8.464.3 in [20] this can
be re-expressed in terms of elementary functions by

f̂(ξξξ) =
c[‖ξξξ‖ cos(‖ξξξ‖)− sin(‖ξξξ‖)]

‖ξξξ‖3 .

Using polar coordinates, we compute the partial inverse:

fR(0) =
c

[2π]3

R∫

0

[
cos(r)− sin(r)

r

]
dr

= c


sin(R)−

R∫

0

sin(r)

r
dr


 .

(4.96)

The last integral has a limit as R → ∞ however sin(R) does not! Thus fR(0) remains
bounded as R tends to infinity but does not converge.

Remark 4.5.3. The reader interested in complete proofs for the results in this section as
well as further material is directed to [40], for the one dimensional case or [72], for higher
dimensions.

Exercises

Exercise 4.5.20. Prove the existence of the limit

lim
R→∞

R∫

0

sin(r)dr

r
.



Chapter 5

Convolution

In the previous chapter we introduced the Fourier transform with two purposes in mind:
(1) Finding the inverse for the Radon transform. (2) Applying it to signal and image
processing problems. Indeed (1) is a special case of (2). In this chapter we introduce a
fundamental operation, called the convolution product. Convolution is intimately connected
to the Fourier transform. Because there is a very efficient algorithm for approximating the
Fourier transform and its inverse, convolution lies at the heart of many practical filters.
After defining the convolution product for functions defined on Rn and establishing its
basic properties we briefly turn our attention to filtering theory.

5.1 Convolution

See: A.7.1.

For applications to medical imaging we use convolution in 1-, 2- and 3-dimensions. The
definition and formal properties of this operation do not depend on the dimension and we
therefore define it and consider its properties for functions defined on Rn.

Definition 5.1.1. If f is an integrable function defined on Rn and g is bounded then the
convolution product of f and g is defined by the absolutely convergent integral

f ∗ g(x) =
∫

Rn

f(x− y)g(y)dy. (5.1)

Remark 5.1.1. There are many different conditions under which this operation is defined.
If the product f(y)g(x − y) is an integrable function of y then f ∗ g(x) is defined by an
absolutely convergent integral. For example, if g is bounded with bounded support then it is
only necessary that f be locally integrable in order for f ∗g to be defined. In this chapter we
use functional analytic methods to extend the definition of convolution to situations where
these integals are not absolutely convergent. This closely follows the pattern established to
extend the Fourier transform to L2(Rn).

Convolution provides a general framework for analyzing moving averages. To better
understand it, first think of f as an input “signal” and g as a non-negative weight function,
then f ∗ g(x) is a weighted average of the values of f. The contribution of f(x − y) to
f ∗ g(x) is given weight g(y).

131
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Example 5.1.1. Let g(x) = 1
2χ[−1,1](x); if f is a locally integrable function then the integrals

in (5.1) make sense. The convolution f ∗ g at x is

f ∗ g(x) = 1

2

x+1∫

x−1

f(y)dy.

This is the ordinary average of f over the interval [x− 1, x+ 1]. If f = χ[−1,1] then

f ∗ g(x) =





0 if |x| > 2,
|2+x|

2 if − 2 ≤ x ≤ 0,
|2−x|

2 if 0 ≤ x ≤ 2.

Example 5.1.2. Let g(x) = cnr
−nχBr(‖x‖); here Br is the ball of radius r in Rn and c−1

n is
the volume of B1. Again f ∗ g is defined for any locally integrable function and is given by

f ∗ g(x) =
∫

Rn

f(x− y)g(y)dy

= cnr
−1

∫

Br

f(x− y)dy.
(5.2)

It is the average of the values of f over points in Br(x).

Convolution also appears in the partial inverse of the Fourier transform. In this case
the weighting function assumes both positive and negative values.

Example 5.1.3. Let f belong to either L1(R) or L2(R). In section 4.4.1 we defined the
partial inverse of the Fourier transform

SR(f)(x) =
1

2π

R∫

−R

f̂(ξ)eixξdξ. (5.3)

This can be represented as a convolution,

SR(f) = f ∗DR,

where

DR(x) =
R sinc(Rx)

π
.

For functions in either space this convolution is given by an absolutely convergent integral.

The convolution product satisfies many estimates, the simplest is a consequence of the
triangle inequality for integrals:

‖f ∗ g‖∞ ≤ ‖f‖L1‖g‖∞. (5.4)

We now establish another estimate which, via Theorem 4.2.3, extends the domain of the
convolution product.
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Proposition 5.1.1. Suppose that f and g are integrable and g is bounded then f ∗ g is
absolutely integrable and

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 . (5.5)

Proof. It follows from the triangle inequality that

∫

Rn

|f ∗ g(x)|dx ≤
∫

Rn

∫

Rn

|f(x− y)g(y)|dydx

=

∫

Rn

∫

Rn

|f(x− y)g(y)|dxdy.
(5.6)

Going from the first to the second lines we interchanged the order of the integrations. This is allowed
by Fubini’s theorem, since f(y)g(x− y) is absolutely integable over Rn × Rn. We change variables
in the x-integral by setting t = x− y to get

‖f ∗ g‖L1 ≤
∫

Rn

∫

Rn

|f(t)||g(y)|dtdy = ‖f‖L1‖g‖L1 .

For a fixed f in L1(Rn) the map from bounded, integrable functions to L1(Rn) defined
by Cf (g) = f ∗ g is linear and satisfies (5.5). As bounded functions are dense in L1(Rn),
Theorem 4.2.3 applies to show that Cf extends to define a map from L1(Rn) to itself.
Because f is an arbitrary integrable function, convolution extends as a map from L1(Rn)×
L1(Rn) to L1(Rn). The following proposition summarizes these observations.

Proposition 5.1.2. The convolution product extends to define a continuous map from
L1(Rn)× L1(Rn) to L1(Rn) which satisfies (5.5).

Remark 5.1.2. If f and g are both in L1(Rn) then the integral defining f ∗ g(x) may not
converge for every x. The fact that f(y)g(x− y) is integrable over Rn × Rn implies that

∫

Rn

f(y)g(x− y)dy

might diverge for x belonging to a set of measure zero. An inequality analogous to (5.5)
holds for any 1 ≤ p ≤ ∞. That is, if f ∈ Lp(Rn) and g ∈ L1(Rn) then f ∗ g is defined as an
element of Lp(Rn), satisfying the estimate

‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 . (5.7)

The proof of this statement is left to the exercises.

Example 5.1.4. Some decay conditions are required for f ∗ g to be defined. If f(x) =

[
√

1 + |x|]−1 then

f ∗ f(x) =
∞∫

−∞

1√
1 + |y|

1√
1 + |x− y|

dy =∞ for all x.

If, on the other hand, we let g = [
√

1 + |x|]−(1+ε), for any positive ε then f ∗ g is defined.
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The basic properties of integration lead to certain algebraic properties for the convolu-
tion product.

Proposition 5.1.3. Suppose that f1, f2, f3 belong to L1(Rn) then the following identities
hold:

f1 ∗ f2 = f2 ∗ f1,

f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3,

f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3.

(5.8)

Proof. We prove the first assertion; it suffices to assume that f2 is bounded, the general case then
follows from (5.5). The definition states that

f1 ∗ f2(x) =
∫

Rn

f1(y)f2(x− y)dy.

Letting t = x− y this integral becomes
∫

Rn

f1(x− t)f2(t)dt = f2 ∗ f1(x).

The proofs of the remaining parts are left to the exercises.

Taken together, these identities say that convolution defines a multiplication on L1(Rn)
which is commutative, distributive and associative. The only thing missing is a multiplica-
tive unit, that is a function i ∈ L1(Rn) so that f ∗ i = f for every f in L1(Rn). It is not
hard to convince ourselves that such a function cannot exist. For if

f(x) =

∫

Rn

f(x− y)i(y)dy,

for every point x and every function f ∈ L1(Rn) then i must vanish for x 6= 0. But in this
case f ∗ i ≡ 0 for any function f ∈ L1(Rn). In section 5.3 we return to this point.

A reason that the convolution product is so important in applications is that the Fourier
transform converts convolution into ordinary pointwise multiplication.

Theorem 5.1.1. Suppose that f and g are absolutely integrable then

F(f ∗ g) = F(f)F(g). (5.9)

Proof. The convolution, f ∗g is absolutely integrable and therefore has a Fourier transform. Because
f(x − y)g(y) is an absolutely integrable function of (x,y), the following manipulations are easily
justified,

F(f ∗ g)(ξξξ) =
∫

Rn

(f ∗ g)(x)e−i〈ξξξ,x〉dx

=

∫

Rn

∫

Rn

f(x− y)gy)e−i〈ξξξ,x〉dydx

=

∫

Rn

∫

Rn

f(t)g(y)e−i〈ξξξ,(y+t)〉dtdy

= f̂(ξξξ)ĝ(ξξξ).

(5.10)
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Remark 5.1.3. The conclusion of Theorem 5.1.1 remains true if f ∈ L2(Rn) and g ∈ L1(Rn).

In this case f ∗ g also belongs to L2(Rn). Note that ĝ is a bounded function, so that f̂ ĝ
belongs to L2(Rn) as well.

Example 5.1.5. Let f = χ[−1,1]. Formula (5.9) simplifies the computation of the Fourier
transform for f ∗ f or even the j-fold convolution of f with itself

f ∗j f d
= f ∗ · · · ∗

j−times
f.

In this case
F(f ∗j f)(ξ) = [2 sinc(ξ)]j .

Example 5.1.6. A partial inverse for the Fourier transform in n-dimensions is defined by

SnR(f) =
1

[2π]n

R∫

−R

· · ·
R∫

−R

f̂(ξξξ)ei〈x,ξξξ〉dξξξ.

The Fourier transform of the function

Dn
R(x) =

[
R

π

]n n∏

j=1

sinc(Rxj)

is χ[−R,R](ξ1) · · ·χ[−R,R](ξn) and therefore Theorem 5.1.1 implies that

SnR(f) = Dn
R ∗ f.

Exercises

Exercise 5.1.1. For f ∈ L1(R) define

fB(x) =

{
f(x) if |f(x)| ≤ B,

0 if |f(x)| > B.

Show that limB→∞ ‖f − fB‖L1 = 0. Use this fact and the inequality, (5.5) to show that the
sequence < fB ∗ g > has a limit in L1(R).

Exercise 5.1.2. Prove the remaining parts of Proposition 5.1.3. Explain why it suffices to
prove these identities for bounded integrable functions.

Exercise 5.1.3. Compute χ[−1,1] ∗j χ[−1,1] for j = 2, 3, 4 and plot these functions on a
single graph.

Exercise 5.1.4. Prove that ‖f ∗ g‖L2 ≤ ‖f‖L2‖g‖L1 . Hint: Use the Cauchy-Schwarz in-
equality.

Exercise 5.1.5. ∗ For 1 < p < ∞ use Hölder’s inequality to show that ‖f ∗ g‖Lp ≤
‖f‖Lp‖g‖L1 .

Exercise 5.1.6. Show that F(Dn
R)(ξξξ) = χ[−R,R](ξ1) · · ·χ[−R,R](ξn).
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Exercise 5.1.7. Prove that the conclusion of Theorem 5.1.1 remains true if f ∈ L2(Rn)
and g ∈ L1(Rn). Hint: Use the estimate ‖f ∗ g‖L2 ≤ ‖f‖L2‖g‖L1 to reduce to a simpler
case.

Exercise 5.1.8. Show that there does not exist an integrable function i so that i∗f = f for
every integrable function f. Hint: Use Theorem 5.1.1 and the Riemann-Lebesgue Lemma.

Exercise 5.1.9. A different partial inverse for the n-dimensional Fourier transform is
defined by

ΣR(f) =
1

[2π]n

∫

‖ξξξ‖≤R

f̂(ξξξ)ei〈x,ξξξ〉dξξξ.

This can also be expressed as the convolution of f with a function F n
R. Find an explicit

formula for F nR.

5.1.1 Shift invariant filters

In engineering essentially any operation which maps inputs to outputs is called a filter.
Since most inputs and outputs are represented by functions, a filter is usually a map from
one space of functions to another. The filter is a linear filter if this map of function spaces is
linear. In practice many filtering operations are given by convolution with a fixed function.
If ψ ∈ L1(Rn) then

Cψ(g) = ψ ∗ g,
defines such a filter. A filter which takes bounded inputs to bounded outputs is called
a stable filter. The estimate (5.4) shows that any filter defined by convolution with an
L1-function is stable. Indeed the estimate (5.7) shows that such filters act continuously on
many function spaces.

Filters defined by convolution have an important physical property: they are shift in-
variant.

Definition 5.1.2. For τττ ∈ Rn the shift of f by τττ is the function fτττ , defined by

fτττ (x) = f(x− τττ).
A filter, A mapping functions defined on Rn to functions defined on Rn is shift invariant if

A(fτττ ) = (Af)τττ .
If n = 1 and the input is a function of time, then a filter is shift invariant if the action

of the filter does not depend on when the input arrives. If the input is a function of spatial
variables, then a filter is shift invariant if its action does not depend on where the input is
located.

Proposition 5.1.4. A filter defined by convolution is shift invariant.

Proof. The proof is a simple change of variables.

Cψ(fτττ )(x) =

∫

Rn

ψ(x− y)f(y − τττ)dy

=

∫

Rn

ψ(x− τττ −w)f(w)dw

= Cψ(f)(x− τττ).

(5.11)

In going from the first to the second line we used the change of variable w = y − τττ .
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In a certain sense the converse is also true: “Any” shift invariant, linear filter can be
represented by convolution. What makes this a little complicated is that the function ψ
may need to be replaced by a generalized function.

Beyond the evident simplicity of shift invariance, this class of filters is important for
another reason: Theorem 5.1.1 shows that the output of such a filter can be computed
using the Fourier transform and its inverse, explicitly

Cψ(f) = F−1(ψ̂f̂). (5.12)

This is significant because the Fourier transform has a very efficient, approximate numerical
implementation.

Example 5.1.7. Let ψ = 1
2χ[−1,1], the convolution ψ ∗ f is the moving average of f over

intervals of length 2. It can be computed using the Fourier transform by,

ψ ∗ f(x) = 1

2π

∞∫

−∞

sinc(ξ)f̂(ξ)eixξdξ.

Exercises

Exercise 5.1.10. For each of the following filters, decide if is shift invariant or non-shift
invariant.

(1). Translation: Aτττ (f)(x) d
= f(x− τττ).

(2). Scaling: Aε(f)(x) d
= 1

εn f
(
x
ε

)
.

(3). Multiplication by a function: Aψ(f) d
= ψf.

(4). Indefinite integral from 0: I0(f)(x)
d
=
∫ x
0 f(y)dy.

(5). Indefinite integral from −∞ : I−∞(f)(x)
d
=
∫ x
−∞ f(y)dy.

(6). Time reversal: Tr(f)(x) d
= f(−x).

(7). Integral filter: f 7→
∫∞
−∞ xyf(y)dy.

(8). Differentiation: D(f)(x) = f ′(x).

Exercise 5.1.11. Suppose that A and B are shift invariant. Show that their composition

A ◦ B(f) d
= A(B(f)) is also shift invariant.

5.2 Convolution and regularity

Generally speaking the averages of a function are smoother than the function itself. If f
is a locally integrable function and g is continuous, with bounded support then f ∗ g is
continuous. Let τττ be a vector in Rn then

lim
τττ→0

[f ∗ g(x+ τττ)− f ∗ g(x)] = lim
τττ→0

∫

Rn

f(y)[g(x+ τττ − y)− g(x− y)]dy.
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Because g has bounded support it follows that the limit on the right can be taken inside
the integral, showing that

lim
τττ→0

f ∗ g(x+ τττ) = f ∗ g(x).

This argument can be repeated with difference quotients to prove the following result.

Proposition 5.2.1. Suppose that f is locally integrable, g has bounded support and k
continuous derivatives, then f ∗ g also has k continuous derivatives. For any multi-index ααα
with |ααα| ≤ k we have

∂αααx (f ∗ g) = f ∗ (∂αααxg). (5.13)

Remark 5.2.1. This result is also reasonable from the point of view of the Fourier transform.
Suppose that g has k integrable derivatives, then Theorem 4.5.2 shows that

|ĝ(ξξξ)| ≤ C

(1 + ‖ξξξ‖)k .

If f is either integrable or square-integrable then the Fourier transform of f ∗ g satisfies an
estimate of the form

|F(f ∗ g)(ξξξ)| ≤ C|f̂(ξξξ)|
(1 + ‖ξξξ‖)k .

This shows that the Fourier transform of f ∗ g has a definite improvement in its rate of
decay over that of f and therefore f ∗ g is commensurately smoother.

5.2.1 Approximation by smooth functions

If ϕ is a smooth function with bounded support and f is locally integrable then ϕ ∗ f is a
smooth function. Hence convolution gives a method for approximating integrable functions
by smooth functions. To do that we choose a non-negative, even, infinitely differentiable
function, φ supported in [−1, 1]. An example is given by the function

φ(t) =

{
e
− 1

1−t2 if |t| < 1,

0 if |t| ≥ 1.

Let ϕ(x) = cnφ(‖x‖), with the constant cn selected so that

∫

Rn

ϕ(x)dx = 1.

For ε > 0 let

ϕε(x) = ε−nϕ(
x

ε
), (5.14)

see figure 5.1. Observe that ϕε is supported in the ball of radius ε. Using the change of
variables εy = x gives

∫

Rn

ϕε(x)dx =

∫

Rn

1

εn
ϕ(
x

ε
)dx =

∫

Rn

ϕ(y)dy = 1. (5.15)
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Figure 5.1: Graphs of ϕε, with ε = .5, 2, 8.

This identity allows the difference between f and ϕε ∗ f to be expressed in a convenient
form

ϕε ∗ f(x)− f(x) =
∫

Bε(x)

[f(y)− f(x)]ϕε(x− y)dy. (5.16)

The integral is over the ball of radius ε, centered at x. It is therefore reasonable to expect
that, as ε goes to zero, ϕε ∗ f converges, in some sense, to f. Note that

ϕ̂(0) =

∞∫

−∞

ϕ(x)dx = 1.

Heuristically this gives another way to understand what happens to ϕε ∗ f as ε→ 0 :

ϕ̂ε ∗ f(ξ) = ϕ̂ε(ξ)f̂(ξ)

= ϕ̂(εξ)f̂(ξ)→ ϕ̂(0)f̂(ξ)

= f̂(ξ) as ε→ 0.

(5.17)

Again, in some sense, ϕε ∗ f converges to f as ε tends to 0.

If we think of f as representing a noisy signal then ϕε ∗f is a smoothed out version of f.
In applications ε is a measure of the resolution available in ϕε∗f. A larger ε results in a more
blurred, but less noisy signal. A smaller ε gives a better approximation, however at the cost
of less noise reduction. The graphs in figure 5.2 show a noisy function and its convolutions
with a smooth function for two values of ε; note the tradeoff between smoothness and detail.
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(a) A noisy function.
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(b) A little smoothing.
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(c) All detail is gone.

Figure 5.2: Using convolution to smooth a noisy function.

The precise sense in which ϕε ∗ f converges to f depends on its regularity and decay.
The square-integrable case is the simplest.

Proposition 5.2.2. Suppose that ϕ is an absolutely integrable function with
∫

Rn

ϕ(x)dx = 1.

If f ∈ L2(Rn) then ϕε ∗ f converges to f in L2(Rn).

Proof. The Plancherel formula implies that

‖ϕε ∗ f − f‖L2 =
1

[2π]
n
2
‖ϕ̂ε ∗ f − f̂‖L2 .

The Fourier transform of ϕε is computed using (4.36), it is

F(ϕε)(ξξξ) = ϕ̂(εξξξ). (5.18)

From Theorem 5.1.1 we obtain

‖ϕ̂ε ∗ f − f̂‖L2 = ‖f̂(ϕ̂ε − 1)‖L2 .

The Lebesgue dominated convergence theorem, (5.18) and the fact that ϕ̂(0) = 1 lead to the
conclusion that

lim
ε→∞

‖f̂(ϕ̂ε − 1)‖L2 = 0.

Another important case is the L1-case

Proposition 5.2.3. Suppose that ϕ is an absolutely integrable function with
∫

Rn

ϕ(x)dx = 1.

If f ∈ L1(Rn) then ϕε ∗ f converges to f in the L1-norm.
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Proof. The proof of this result is quite different from the L2-case it relies on the follwing lemma:

Lemma 5.2.1. If f ∈ L1(Rn) then

lim
τττ→0

‖fτττ − f‖L1 = 0.

In other words the translation operator, (τττ , f) 7→ fτττ is a continuous map of Rn×L1(Rn) to L1(Rn).
The proof of this statement is left to the exercises. The triangle inequality shows that

‖ϕε ∗ f − f‖L1 =

∫

Rn

∣∣∣∣∣∣

∫

Rn

[f(x− εt)− f(x)]ϕ(t)dt

∣∣∣∣∣∣
dx

≤
∫

Rn

|ϕ(t)|




∫

Rn

|f(x− εt)− f(x)|dx


 dt

=

∫

Rn

|ϕ(t)|‖fεt − f‖L1dt.

(5.19)

The last integrand is bounded by 2‖f‖L1 |ϕ(t)| and therefore the limit, as ε goes to zero, can be
brought inside the integral. The conclusion of the proposition follows from Lemma.

It is also useful to examine ϕε ∗ f(x) at points where f is smooth.

Proposition 5.2.4. Let f be a locally integrable function and suppose that ϕ has bounded
support. If f is continuous at x then

lim
ε↓0

ϕε ∗ f(x) = f(x).

Proof. As f is continuous at x, given η > 0 there is a δ > 0 so that

‖x− y‖ < δ ⇒ |f(x)− f(y)| < η. (5.20)

If ε is sufficiently small, say less than ε0, then the support of ϕε is contained in the ball of radius δ.
Finally since the total integral of ϕ is 1 we have, for an ε < ε0 that

|ϕε ∗ f(x)− f(x)| =

∣∣∣∣∣∣

∫

Bδ

ϕε(y)(f(x− y)− f(x))dy

∣∣∣∣∣∣

≤
∫

Bδ

ϕε(y)|f(x− y)− f(x)|dy

≤
∫

Bδ

ϕε(y)ηdy

≤ η.

(5.21)

In the second line we use the fact that ϕε is non-negative and, in the third line, estimate (5.20).

Remark 5.2.2. If f has k continuous derivatives in Bδ(x) then, for ε < δ and ααα with |ααα| ≤ k,
Proposition 5.2.1 implies that

∂αx (ϕε ∗ f)(x) = ϕε ∗ ∂αααxf(x).
Proposition 5.2.4 can be applied to conclude that

lim
ε→0

∂αx (ϕε ∗ f)(x) = ∂αααxf(x).
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There are many variants of these results. The main point of the proof is that ϕ is
absolutely integrable. Many similar looking results appear in analysis, though with much
more complicated proofs. In most of these cases ϕ is not absolutely integrable. For exam-
ple, the Fourier inversion formula in one-dimension amounts to the statement that ϕε ∗ f
converges to f where ϕ(x) = π−1 sinc(x). As we have noted several times, before sinc(x) is
not absolutely integrable.

In practice, infinitely differentiable functions can be difficult to work with. To simplify
computations a finitely differentiable version may be preferred. For example, given k ∈ N
define the function

ψk(x) =

{
ck(1− x2)k if |x| ≤ 1,

0 if |x| > 1.
(5.22)

The constant, ck is selected so that ψk has total integral one. The function ψk has k − 1
continuous derivatives. If

ψk,ε(x) = ε−1ψk,ε(
x

ε
)

and f is locally integrable, then < ψk,ε ∗ f > is a sequence of k − 1-times differentiable
functions, which converge, in an appropriate sense to f.

Using these facts we now complete the proof of the Fourier inversion formula. Thus far
Theorems 4.2.1 and 4.5.1 were proved with the additional assumption that f is continuous.

Proof of the Fourier inversion formula, completed. Suppose that f and f̂ are absolutely integrable

and ϕε is as above. Note that f̂ is a continuous function. For each ε > 0 the function ϕε ∗ f is
absolutely integrable and continuous. Its Fourier transform, ϕ̂(εξξξ)f̂(ξξξ), is absolutely integrable. As

ε goes to zero it converges locally uniformly to f̂(ξ). Since these functions are continuous we can
use the Fourier inversion formula to conclude that

ϕε ∗ f(x) =
1

2π

∫

Rn

ϕ̂(εξξξ)f̂(ξξξ)i〈x,ξξξ〉dξξξ.

This is a locally uniformly convergent family of continuous functions and therefore has a continuous
limit. The right hand side converges pointwise to

F (x) =

∫

Rn

f̂(ξξξ)i〈x,ξξξ〉dξξξ.

Lemma 5.2.1 implies that ‖ϕε ∗f −f‖L1 also goes to zero as ε tends to 0 and therefore F (x) = f(x).
(To be precise we should say that after modification on a set of measure 0, F (x) = f(x).) This
completes the proof of the Fourier inversion formula.

Exercises

Exercise 5.2.1. Let f be an integrable function with support in the interval [a, b] and g an
integrable function with support in [−ε, ε]. Show that the support of f ∗ g(x) is contained
in [a− ε, b+ ε].

Exercise 5.2.2. Use Corollary A.7.1 to prove Lemma 5.2.1.

Exercise 5.2.3. Give the details of the argument, using Lemma 5.2.1, showing that if f
is an L1-function then

lim
ε→0

∫

Rn

ϕ(t)‖fεt − f‖L1dt = 0.
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Exercise 5.2.4. Use the method used to prove Proposition 5.2.4 to show that if f ∈ Lp(R)
for a 1 ≤ p <∞ then ϕε ∗ f converges to f in the Lp-norm. Give an example to show that
if f is a bounded, though discontinuous function, then ‖ϕε ∗ f − f‖∞ may fail to tend to
zero.

Exercise 5.2.5. Let ψε(x) = [2ε]−1χ[−ε,ε](x). Show that if f ∈ L2(R) then ψε ∗f converges

to f in L2(R).

Exercise 5.2.6. For the functions ψk, defined in (5.22), find the constants ck so that

1∫

−1

ψk(x)dx = 1.

Exercise 5.2.7. Use the Fourier inversion formula to prove that

f̂g(ξ) =
1

2π
f̂ ∗ ĝ(ξ). (5.23)

What assumptions are needed for f̂ ∗ ĝ to make sense?

Exercise 5.2.8. ∗ For k a positive integer suppose that f and ξkf̂(ξ) belong to L2(R). By
approximating f by smooth functions of the form ϕε ∗ f show that f has k L2-derivatives.

5.2.2 The support of f ∗ g.

Suppose that f and g have bounded support. For applications to medical imaging it is
important to understand how the support of f ∗ g is related to the supports of f and g. To
that end we define the algebraic sum of two subsets of Rn.

Definition 5.2.1. Suppose A and B are subsets of Rn. The algebraic sum of A and B is
defined as the set

A+B = {a+ b ∈ Rn : a ∈ A, and b ∈ B}.

Using this concept we can give a quantitative result describing the way in which con-
volution “smears” out the support of a function.

Lemma 5.2.2. The support of f ∗ g is contained in supp f + supp g.

Proof. Suppose that x is not in supp f + supp g. This means that no matter which y is selected
either f(y) or g(x− y) is zero. Otherwise x = y + (x− y) would belong to supp f + supp g. This
implies that f(y)g(x− y) is zero for all y ∈ Rn and therefore

f ∗ g(x) =
∫

Rn

f(y)g(x− y)dy = 0

as well. This proves the lemma.

Suppose that f is a function which represents an image. For example we could imagine
that f takes values between 0 and 1 with 0 corresponding to white and 1 to black. Values
in between correspond to shades of grey. Convolution with a function like ϕε, defined in
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section 5.2.1, provides a reasonable model for the measurement of such an image. Suppose
that f has bounded support then, by Lemma 5.2.2,

supp(f ∗ ϕε) ⊂ supp f + suppϕε.

As ϕε is supported in Bε this is the ε-neighborhood of the support of f,

supp(f)ε = {x ∈ Rn : dist(x, supp(f)) ≤ ε}.

The figures indicates what happens in the 2-dimensional case.

ε

after convolution

original

noise

Figure 5.3: f is smeared into the ε-neighborhood of supp(f).

The convolution of f with ϕε smears the image represented by f. The value of ϕε ∗ f(x)
depends on the values of f in the ball of radius ε about x, hence parameter ε reflects the
resolution of the measuring apparatus.

At points where the image is slowly varying the measured image is close to the actual
image. Near points where f is rapidly varying this may not be the case. Noise is usually
a high frequency phenomenon with “mean zero;” smoothing averages out the noise. At
the same time, the image is blurred. The size of ε determines the degree of blurring. The
Fourier transform of f ∗ϕε is f̂(ξξξ)ϕ̂(εξξξ). Because ϕ has integral 1 it follows that ϕ̂(0) = 1. As
the support of ϕ is a bounded set, its Fourier transform is a smooth function. This shows
that ϕ̂(εξξξ) ≈ 1 if ‖ξξξ‖ << ε−1. Thus the “low frequency” part of f ∗ϕε closely approximates
the low frequency part of f. On the other hand ϕ̂(ξξξ) tend to zero rapidly as ‖ξξξ‖ → ∞ and
therefore the high frequency content of f is suppressed in f ∗ ϕε. Unfortunately both noise
and fine detail are carried by the high frequency components. Using convolution to supress
noise inevitably destroys fine detail.

5.2.3 Convolution equations

Convolution provides a model for many measurement and filtering processes. If f is the
state of a system then, for a fixed function ψ, the output g is modeled by the convolution
g = ψ ∗ f. In order to recover the state of the system from the output one must therefore
solve this equation for f as a function of g. Formally this equation is easy to solve, (5.10)
implies that

f̂(ξξξ) =
ĝ(ξξξ)

ψ̂(ξξξ)
.

There are several problems with this approach. The most obvious problem is that ψ̂
may vanish for some values of ξξξ. If the model were perfect then, of course, ĝ(ξξξ) would also
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have to vanish at the same points. In real applications this leads to serious problems with
stability. A second problem is that, if ψ(x) is absolutely integrable, then the Riemann-

Lebesgue lemma implies that ψ̂(ξξξ) → 0 as ‖ξξξ‖ → ∞. Unless the measurement g is very
smooth and noise free we would be unable to invert the Fourier transform of this ratio to
determine f. In Chapter 9 we discuss how these issues are handled in practice.

Example 5.2.1. The rectangle function defines a simple weight, ψε = (2ε)−1χ[−ε,ε]. Its
Fourier transform is given by

ψ̂ε(ξ) = sinc(εξ).

This function has zeros at ξ = ±(ε−1mπ), where m is any positive integer. These zeros are
isolated so it seems reasonable that an integrable function f should be uniquely specified
by the averages ψε ∗ f, for any ε > 0. In fact it is, but the problem of reconstucting f from
these averages is not well posed.

Example 5.2.2. Suppose that ψ is a non-negative function which vanishes outside the in-
terval [−ε, ε] and has total integral 1,

∞∫

−∞

ψ(x)dx = 1.

If f is a locally integrable function then f ∗ ψ(x) is the weighted average of the values of f
over the interval [x− ε, x+ ε]. Note that ψ ∗ ψ also has total integral 1

∞∫

−∞

ψ ∗ ψ(x)dx =

∞∫

−∞

∞∫

−∞

ψ(y)ψ(x− y)dydx

=

∞∫

−∞

∞∫

−∞

ψ(y)ψ(t)dtdy

= 1 · 1 = 1.

(5.24)

In the second to last line we reversed the order of the integrations and set t = x− y.
Thus f ∗ (ψ ∗ ψ) is again an average of f. Note that ψ ∗ ψ(x) is generally non-zero for

x ∈ [−2ε, 2ε], so convolving with ψ ∗ ψ produces more blurring than convolution with ψ
alone. Indeed we know from the associativity of the convolution product that

f ∗ (ψ ∗ ψ) = (f ∗ ψ) ∗ ψ,

so we are averaging the averages, f ∗ ψ. This can be repeated as many times as one likes,
the j-fold convolution ψ ∗j ψ has total integral 1 and vanishes outside the interval [−jε, jε].
Of course the Fourier transform of ψ ∗j ψ is [ψ̂(ξ)]j which therefore decays j times as fast

as ψ̂(ξ).
We could also use the scaled j-fold convolution δ−1ψ ∗j ψ(δ−1x) to average our data.

This function vanishes outside the interval [−jδε, jδε] and has Fourier transform [ψ̂(δξ)]j .
If we choose δ = j−1 then convolving with this function will not blur details any more than
convolving with ψ itself but better suppresses high frequency noise. By choosing j and δ
we can control, to some extent, the trade off between blurring and noise suppression.



146 CHAPTER 5. CONVOLUTION

Exercises

Exercise 5.2.9. If a and b are positive numbers then define

wa,b(x) =
1

2
[ra(x) + rb(x)].

Graph wa,b(x) for several different choices of (a, b). Show that for appropriate choices of a
and b the Fourier transform ŵa,b(ξ) does not vanish for any value of ξ.

Exercise 5.2.10. Define a function

f(x) = χ[−1,1](x)(1− |x|)2.

Compute the Fourier transform of this function and show that it does not vanish anywhere.
Let fj = f ∗j f (the j-fold convolution of f with itself). Show that the Fourier transforms,

f̂j are also non-vanishing.

5.3 The δ-function

See: A.5.6.

The convolution product defines a multiplication on L1(Rn) with all the usual properties
of a product except that there is no unit. If i were a unit then i ∗ f = f for every function
in L1(Rn). Taking the Fourier transform, this would imply that, for every ξξξ,

î(ξξξ)f̂(ξξξ) = f̂(ξξξ).

This shows that î(ξξξ) ≡ 1 and therefore i cannot be an L1-function. Having a multiplicative
unit is so useful that engineers, physicists and mathematicians have all found it necessary
to simply define one. It is called the δ-function and is defined by the property that for any
continuous function f

f(0) =

∫

Rn

δ(y)f(y)dy. (5.25)

Proceeding formally we see that

δ ∗ f(x) =
∫

Rn

δ(y)f(x− y)dy

= f(x− 0) = f(x).

(5.26)

So at least for continuous functions δ ∗ f = f.
It is important to remember the δ-function is not a function. In the mathematics

literature the δ-function is an example of a distribution or generalized function. The basic
properties of generalized functions are introduced in Appendix A.5.6. In the engineering
and physics literature it is sometimes called a unit impulse. In section 4.4.4 the Fourier
transform is extended to generalized functions (at least in the one-dimensional case). The
Fourier transform of δ is as expected, identically equal to 1:

F(δ) ≡ 1.
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While (5.25) only makes sense for functions continuous at 0, the convolution of δ with
arbitrary locally integrable functions is well defined and satisfies δ ∗ f = f. This is not too
different from the observation that if f and g are L1-functions then f ∗ g(x) may not be
defined at every point, nonetheless, f ∗ g is a well defined element of L1(Rn).

In both mathematics and engineering it is useful to have approximations for the δ-
function. There are two complementary approaches to this problem, one is to use functions
like ϕε, defined in (5.14) to approximate δ in x-space. The other is to approximate δ̂ in
ξξξ-space. To close this chapter we formalize the concept of resolution and considering some
practical aspects of approximate δ-functions in one-dimension.

5.3.1 Approximating the δ-function in 1-dimension

Suppose that ϕ is an even function with bounded support. The Fourier transform of ϕε
is ϕ̂(εξ). Because ϕε vanishes outside a finite interval its Fourier transform is a smooth
function and ϕ̂(0) = 1. As ϕ is a non-negative, even function its Fourier transform is real
valued and assumes its maximum at zero. In applications it is important that the difference
1 − ϕ̂(εξ) remain small over a specified interval [−B,B]. It is also important that ϕ̂(εξ)
tend to zero rapidly outside a somewhat larger interval. As ϕ is non-negative, ∂ξϕ̂(0) = 0;
this means that the behavior of ϕ̂(ξ) for ξ near to zero is largely governed by the “second
moment”

∂2
ξ ϕ̂(0) = −

∞∫

−∞

x2ϕ(x)dx.

One would like this number to be small. This is accomplished by putting more of the mass
of ϕ near to x = 0. On the other hand the rate at which ϕ̂ decays as |ξ| → ∞ is determined
by the smoothness of ϕ. If ϕ = 1

2χ[−1,1] then ϕ̂ decays like |ξ|−1. Better decay is obtained
by using a smoother function. In applications having ϕ̂ absolutely integrable is usually
adequate. In one-dimension this is the case if ϕ is continuous and piecewise differentiable.

The other approach to constructing approximations to the δ-function is to approximate
its Fourier transform. One uses a sequence of functions which are approximately 1 in an
interval [−B,B] and vanish outside a larger interval. Again a simple choice is χ[−B,B](ξ).

The inverse Fourier transform of this function is ψB(x) = π−1B sinc(Bx). In this context
it is called a sinc pulse. Note that ψB assumes both positive and negative values. A
sinc-pulse is not absolutely integrable, the fact that the improper integral of ψB over the
whole real line equals 1 relies on subtle cancellations between the positive and negative
parts of the integral. Because ψB is not absolutely integrable, it is often a poor choice
for approximating the δ-function. Approximating δ̂ by (2B)−1χ[−B,B] ∗ χ[−B,B](ξ) gives a

sinc2-pulse, (2B)−1ψ2
B(x), as an approximation to δ. This function has better properties: it

does not assume negative values, is more sharply peaked at 0 and is absolutely integrable.
These functions are graphed in figure 5.4.
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(a) A sinc-pulse.
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(b) A sinc2-pulse.

Figure 5.4: Approximate δ-functions

Neither the sinc nor sinc2 has bounded support, both functions have oscillatory “tails”
extending to infinity. In the engineering literature these are called side lobes. Side lobes
result from the fact that the Fourier transform vanishes outside a bounded interval, see
section 4.4.3. The convolutions of these functions with χ[−1,1] are shown in figure 5.5. In
figure 5.5(a) notice that the side lobes produce large oscillations near the jump. This is an
example of the “Gibbs phenomenon.” It results from using a discontinuous cutoff function
in the Fourier domain. This effect is analyzed in detail, for the case of Fourier series in
section 7.5.
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(a) sinc ∗χ[−1,1].
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Figure 5.5: Approximate δ-functions convolved with χ[−1,1].

Exercises

Exercise 5.3.1. Suppose that f is a continuous L1-function and ϕ is absolutely integrable
with

∫
R ϕ = 1. Show that < ϕε ∗ f > converges pointwise to f.



5.3. THE δ-FUNCTION 149

Exercise 5.3.2. Suppose that ϕ is an integrable function on the real line with total integral
1 and f is an integrable function such that, for a k > 1,

|f̂(ξ)| ≤ C

(1 + |ξ|)k .

Use the Fourier inversion formula to estimate the error ‖ϕε ∗ f(x)− f(x)|.

5.3.2 Resolution and the full width half maximum

We now give a standard definition for the resolution present in a measurement of the form
ψ ∗ f. Resolution is a subtle and, in some senses, subjective concept. It is mostly useful
for purposes of comparision. The definition presented here is just one of many possible
definitions.

Suppose that ψ is a non-negative function with a single hump similar to those shown
in figure 5.1. The important features of this function are

1. It is non-negative,

2. It has a single maximum value, which it attains at 0,

3. It is monotone increasing to the left of the maximum

and monotone decreasing to the right.

(5.27)

Definition 5.3.1. Let ψ satisfy these conditions and let M be the maximum value it
attains. Let x1 < 0 < x2 be respectively the smallest and largest numbers so that

ψ(x1) = ψ(x2) =
M

2
.

The difference x2−x1 is called the full width half maximum of the function ψ. It is denoted
FWHM(ψ). If f is an input then the resolution available in the measurement, ψ ∗ f is
defined to be the FWHM(ψ).

In principle if FWHM(ψ1) < FWHM(ψ2) then f 7→ ψ1 ∗f should have better resolution
than f 7→ ψ2 ∗ f. Here is a heuristic explanation for this definition. Suppose that the signal
f is pair of unit impulses separated by a distance d,

f(x) = δ(x) + δ(x− d).

Convolving ψ with f produces two copies of ψ,

ψ ∗ f(x) = ψ(x) + ψ(x− d).

If d > FWHM(ψ) then ψ ∗ f has two distinct maxima separated by a valley. If d ≤
FWHM(ψ) then the distinct maxima disappear. If the distance between the impulses is
greater than the FWHM(ψ) then we can “resolve” them in the filtered output. More gen-
erally the FWHM(ψ) is considered to be the smallest distance between distinct “features”
in f which can be seen in ψ ∗ f. In figure 5.6 we use a triangle function for ψ. The FWHM
of this function is 1, the graphs show ψ and the results of convolving ψ with a pair of unit
impulses separated, respectively by 1.2 > 1 and .8 < 1.
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Figure 5.6: Illustration of the FWHM definition of resolution

This definition is often extended to functions which do not satisfy all the conditions
in (5.27) but are qualitatively similar. For example the characteristic function of an interval
χ[−B,B](x) has a unique maximum value and is monotone to the right and left of the
maximum. The FWHM(χ[−B,B]) is therefore 2B. Another important example is the sinc-
function. It has a unique maximum and looks correct near to it. This function also has
large side-lobes which considerably complicate the behavior of the map f 7→ f ∗ sinc .
The FWHM(sinc) is taken to be the full width half maximum of its central peak, it is
approximately given by

FWHM(sinc) ≈ 1.895494.

We return to the problem of quantifying resolution in Chapter 9.

Exercises

Exercise 5.3.3. Numerically compute the FWHM(sinc2(x)). How does it compare to
FWHM(sinc(x)).

Exercise 5.3.4. Suppose that

hj(x) =

[
sin(x)

x

]j
.

Using the Taylor expansion for sine function show that, as j gets large,

FWHM(hj) '
√

6 log 2

j
.

Exercise 5.3.5. Using the Taylor expansion for the sine, show that as B gets large

FWHM(sinc(Bx)) '
√
3

B
.

Exercise 5.3.6. For a > 0 let ga(x) = e−
x2

a2 . Compute FWHM(ga) and FWHM(ga ∗ gb).


