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Chapter 1

Measurements and modeling

A quantitative model of a physical system is expressed in the language of mathematics.
A qualitative model often precedes a quantitative model. For many years clinicians used
medical X-rays without employing a precise quantitative model. X-rays were thought of as
high frequency ‘light’ with three very useful properties:

(1). If X-rays are incident on a human body, some fraction of the incident radiation is
absorbed, though a sizable fraction is transmitted. The fraction absorbed is propor-
tional to the total ‘density’ of the material encountered.

(2). A ‘beam’ of X-ray light travels in a straight line.

(3). X-rays darken photographic film. The opacity of the film is, in some sense, propor-
tional to the incident energy.
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(a) Depth information is lost in a
projection.

(b) A old fashioned chest X-ray.

Figure 1.1: The world of old fashioned X-rays.

1
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Taken together, these properties mean that using X-rays one could “see through” a human
body to obtain a shadow or projection of the internal anatomy on a sheet of film.1.

The model was adequate given the available technology. In their time, X-rays led to
a revolution in the practice of medicine because they opened the door to non-destructive
examination of internal anatomy. They are still useful for locating bone fractures, dental
caries, and foreign objects but their ability to visualize soft tissues and more detailed
anatomic structure is very limited. There are several reasons for this. An X-ray image is a
two-dimensional representation of a three-dimensional object. In figure 1.1(a), the opacity
of the film at a point on the film plane is inversely proportional to an average of the density
of the object, measured along the line joining the point to the X-ray source. This renders
it impossible to deduce the spatial ordering in the missing third dimension. Photographic
film is not very sensitive to X-rays. To get a usable image, a light emitting phosphor is
sandwiched with the film. This increases the sensitivity of the overall ‘detector,’ but even
so, large changes in the intensity of the incident X-rays still produce small differences in
the opacity of film. This means that the contrast between different soft tissues is poor.
Because of these limitations a qualitative theory was adequate for the interpretation of
X-ray images.

A desire to improve upon this situation led Alan Cormack, [10] and Godrey Hounsfield,
[30] to independently develop X-ray tomography or slice imaging. The first step in their
work was to use a quantitative theory for the absorption of X-rays. Such a theory already
existed and is little more than a quantitative restatement of (1) and (2). It is not needed for
old fashioned X-rays because they are read “by eye,” no further processing is done after the
film is developed. Both Cormack and Hounsfield realized that mathematics could be used
to infer 3-dimensional anatomic structure from a large collection of different 2-dimensional
projections. The possibility for making this idea work relied on two technological advances:

(1). The availability of scintillation crystals to use as detectors.

(2). Powerful, digital computers to process the tens of thousands of measurements
needed to form a usable image.

A detector using a scintillation crystal is about a hundred times more sensitive than pho-
tographic film. Increasing the dynamic range in the basic measurements makes possible
much finer distinctions. As millions of arithmetic operations are needed for each image, fast
computers are a necessity for reconstructing an image from the available measurements. It
is an interesting historical note that the mathematics underlying X-ray tomography was
done in 1917 by Johan Radon, [59]. It had been largely forgotten and both Hounsfield
and Cormack worked out solutions to the problem of reconstructing an image from its pro-
jections. Indeed, this problem had arisen and been solved in contexts as diverse as radio
astronomy and statistics.

This book is a detailed exploration of the mathematics that underpins the reconstruc-
tion of images in X-ray tomography. While our emphasis is on understanding these math-
ematical foundations, we constantly return to the practicalities of X-ray tomography. Of
particular interest is the relationship between the mathematical treatment of a problem and

1Chest x-ray provided courtesy of Dr. David S. Feigen, ENS Sherri Rudinsky and Dr. James G.
Smirniotopoulos of the Uniformed Services University of the Health Sciences, Dept. of Radiology, Bethesda,
MD
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the realities of numerical computation and physical measurement. There are many different
imaging modalities in common use today, X-ray computed tomography (CT), magnetic res-
onance imaging (MRI), positron emission tomography (PET), ultrasound, optical imaging,
electrical impedence imaging, etc. Because each relies on a different physical principle, each
provides different information. In every case the mathematics needed to process and inter-
pret the data has a large overlap with that used in X-ray CT. We concentrate on X-ray CT
because of the simplicity and clarity of the physical principles underlying the measurement
process. Detailed descriptions of the other modalities can be found in [39] or [4].

1.1 Mathematical modeling

Mathematics is the language in which any quantitative theory or model is eventually ex-
pressed. In this introductory chapter we consider a variety of examples of physical systems,
measurement processes, and the mathematical models used to describe them. These models
illustrate different aspects of more complicated models used in medical imaging.

Mathematics is used to model physical systems from the formation of the universe to
the structure of the atomic nucleus, from the function of the kidney to the opinions of
voters. The first step in giving a mathematical description of a “system” is to isolate
that system from the universe in which it sits. While it is no doubt true that a butterfly
flapping its wings in Siberia in mid-summer will effect the amount of rainfall in the Amazon
rain forest a decade hence, it is surely a tiny effect, impossible to accurately quantify.
To obtain a practical model such effects are ignored, though they may come back, as
measurement error and noise to haunt the model. After a system is isolated, we need to
find a collection of numerical parameters which describe its state. In this generality these
parameters are called state variables. In the idealized world of an isolated system the exact
measurement of the state variables should uniquely determine the state of the system. It
may happen that the state parameters which give a convenient description of the system
are not directly measurable. The mathematical model then describes relations among the
state variables. Using these relations the state of the system can often be determined from
feasible measurements. A simple example will clarify these very abstract sounding concepts.

Example 1.1.1. Suppose the system is a ball on a rod. For simplicity we assume the ball
has radius zero. The state of the system is described by (x, y), the coordinates of the ball.
These are the state variables. If the rod is of length r and one end of it is fixed at the point
(0, 0), then the state variables satisfy the relation

x2 + y2 = r2. (1.1)

Imagine now that one dimensional creatures, living on the x-axis {y = 0} can observe a
shadow of the ball, cast by very distant light sources so that the rays of light are perpen-
dicular to the x-axis. The line creatures want to predict whether or not the ball is about
to collide with their world. Locating the shadow determines the x-coordinate of the ball
and using equation (1.1) gives

y = ±
√

r2 − x2.

To determine the sign of the y-coordinate requires additional information not available in
the model. On the other hand this information is adequate if one only wants to predict if the
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ball is about to collide with the x-axis. If the x-axis is illuminated by red light from above
and blue light from below, then a ball approaching from below would cast of red shadow
while a ball approaching from above would cast a blue shadow. With this additional data,
the location of the ball is completely determined.

Ordered pairs of real numbers, {(x, y)} are the state variables for the system in ex-
ample 1.1.1. Because of the constraint (1.1) not every pair defines a state of this system.
Generally we define the state space to be values of state variables which correspond to ac-
tual states of the system. The state space in example 1.1.1 is the circle of radius r centered
at (0, 0).

Exercises

Exercise 1.1.1. Suppose that in example 1.1.1 light sources are located at (0,±R). What
is the relationship between the x-coordinate and the shadow?

Exercise 1.1.2. Suppose that in example 1.1.1 the ball is tethered to (0, 0) by a string of
length r. What relations do the state variables (x, y) satisfy? Is there a measurement the
line creatures can make to determine the location of the ball? What is the state space for
this system?

Exercise 1.1.3. Suppose that the ball is untethered, but is constrained to lie in the region
{(x, y) : 0 ≤ y < R}. Assume the points {(x1, y1), (x2, y2), (x3, y3)} do not lie on a line
and have yj > R. Show that the shadows cast on the line y = 0 by light sources located at
these three points determine the location of the ball. Find a formula for (x, y) in terms of
the shadow locations. Why are three sources needed?

1.1.1 Finitely many degrees of freedom

See: A.1, B.5, B.6, B.7.

The collection of ordered n-tuples of real numbers

{(x1, . . . , xn) : xj ∈ R, j = 1, . . . , n}

is called Euclidean n-space and is denoted by R
n. We often use boldface letters x,y to

denote points in R
n which we sometimes call vectors. Recall that if x = (x1, . . . , xn) and

y = (y1, . . . , yn) then their sum x + y is defined by

x + y = (x1 + y1, . . . , xn + yn), (1.2)

and if a ∈ R then ax is defined by

ax = (ax1, . . . , axn). (1.3)

These two operations make R
n into a real vector space. This space is the simplest state

space for a system with n degrees of freedom.
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If the state of a system is described by a finite collection of real numbers then the
system has finite many degrees of freedom. Most of the systems encountered in elementary
physics and electrical engineering have this property. Suppose that the state of a system
is specified by a point x ∈ R

n then the mathematical model is expressed as relations that
these variables satisfy. These often take the form of functional relations,

f1(x1, . . . , xn) = 0
...

...
fm(x1, . . . , xn) = 0.

(1.4)

The state space for the system is then the subset of R
n consisting of solutions to this system

of equations. Example 1.1.1 considers a system with one degree of freedom. The state space
for this system is the subset of R

2 consisting of points satisfying (1.1). If the state variables
satisfy constraints then this generally reduces the number of degrees of freedom.

A function f : R
n → R is linear if satisfies the conditions

f(x + y) = f(x) + f(y) for all x,y ∈ R
n and

f(ax) = af(x) for all a ∈ R and x ∈ R
n.

(1.5)

Recall that the dot or inner product is the map from R
n × R

n → R defined by

〈x,y〉 =
n

∑

j=1

xjyj. (1.6)

Sometimes it is denoted by x · y. The Euclidean length of x ∈ R
n is defined to be

‖x‖ =
√

〈x,x〉 =





n
∑

j=1

x2
j





1

2

. (1.7)

From the definition it is easy to establish that

〈x,y〉 = 〈y,x〉 for all x,y ∈ R
n,

〈ax,y〉 = a〈x,y〉 for all a ∈ R and x ∈ R
n,

〈x1 + x2,y〉 = 〈x1,y〉 + 〈x2,y〉 for all x1,x2,y ∈ R
n.

‖cx‖ = |c|‖x‖ for all c ∈ R and x ∈ R
n.

(1.8)

For y a point in R
n define the function

fy(x) = 〈x,y〉.

The second and third relations in (1.8) show that fy is linear. Indeed every linear function
has a such a representation.

Proposition 1.1.1. If f : R
n → R is a linear function then there is a unique vector yf

such that f(x) = 〈x,yf 〉.
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This fact is proved in exercise 1.1.5.
The inner product satisfies a basic inequality called the Cauchy-Schwarz inequality.

Proposition 1.1.2 (Cauchy-Schwarz inequality). If x,y ∈ R
n then

|〈x,y〉| ≤ ‖x‖‖y‖. (1.9)

A proof of this result is outlined in exercise 1.1.6. The Cauchy-Schwarz inequality shows
that if neither x nor y is zero then

−1 ≤ 〈x,y〉
‖x‖‖y‖ ≤ 1,

this in turn allows us the define the angle between two vectors.

Definition 1.1.1. If x,y ∈ R
n are both non-vanishing then the angle θ ∈ [0, π], between

x and y is defined by

cos θ =
〈x,y〉
‖x‖‖y‖ . (1.10)

In particular two vector are orthogonal if 〈x,y〉 = 0.

The Cauchy-Schwarz inequality implies that the Euclidean length satisfies the triangle

inequality.

Proposition 1.1.3. For x,y ∈ R
n the following inequality holds

‖x + y‖ ≤ ‖x‖ + ‖y‖. (1.11)

Suppose that the state of a system is specified by a point in R
n subject to the constraints

in (1.4). If all the functions {f1, . . . , fm} are linear then we say that this is a linear model.
This is the simplest type of model and also the most common in applications. For a linear
model it is a simple matter to determine the number of degrees of freedom. Suppose there
is a single equation, in light of Proposition 1.1.1 it can be expressed in the form

〈a1,x〉 = 0, (1.12)

with a1 non-zero. This is the equation of a hyperplane in R
n. The solutions are the vectors

in R
n orthogonal to a1. Recall the following definition:

Definition 1.1.2. The vectors {v1, . . . ,vk} are linearly independent if the only linear
combination, c1v1 + · · · + ckvk which vanishes has all its coefficients, {ci} equal to zero.
Otherwise the vectors are linearly dependent.

There is a collection of (n − 1) linearly independent n-vectors {v1, . . . ,vn−1} so that
〈a1,x〉 = 0 if and only if

x =

n−1
∑

i=1

civi.

The system described by this equation has n − 1 degrees of freedom.
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The general case is not much harder. Suppose that the state space is the solution set
of the system of linear equations

〈a1,x〉 = 0
...

...
〈am,x〉 = 0.

(1.13)

Suppose that k ≤ m is the largest number of linear independent vectors in the collection
{a1, . . . ,am}. By renumbering we can assume that {a1, . . . ,ak} are linearly independent
and for any l > k, the vector al is a linear combination of these vectors. Hence if x satisfies

〈ai,x〉 = 0 for 1 ≤ i ≤ k

then it also satisfies 〈al,x〉 = 0 for any l greater than k. The argument in the previous
paragraph can be applied recursively to conclude that there is a collection of n− k linearly
independent vectors {u1, . . . ,un−k} so that x solves (1.13) if and only if

x =

n−k
∑

i=1

ciui.

Thus the system has n − k-degrees of freedom.
A non-linear model can often be approximated by a linear model. If f is a differentiable

function then the gradient of f at x is defined to be

∇f(x) =

(

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)

.

From the definition of the derivative it follows that

f(x0 + x1) = f(x0) + 〈x1,∇f(x0)〉 + e(x1), (1.14)

where the error e(x1) satisfies

lim
x1→0

|e(x1)|
‖x1‖

= 0.

In this case we write
f(x0 + x1) ≈ f(x0) + 〈x1,∇f(x0)〉. (1.15)

Suppose that the functions in (1.4) are differentiable and fj(x0) = 0 for j = 1, . . . ,m
then

fj(x0 + x1) ≈ 〈x1,∇fj(x0)〉.
For small values of x1 the system of equations (1.4) can be approximated, near to x0, by a
system of linear equations,

〈x1,∇f1(x0)〉 = 0
...

...
〈x1,∇fm(x0)〉 = 0.

(1.16)

This provides a linear model which approximates the non-linear model. The accuracy of this
approximation depends in subtle way on the collection of vectors {∇f1(x), . . . ,∇fm(x)},



8 CHAPTER 1. MEASUREMENTS AND MODELING

for x near to x0. The simplest situation is when these vectors are linearly independent at
x0. In this case the solutions to

fj(x0 + x1) = 1, j = 1, . . . ,m,

are well approximated, for small x1, by the solutions of (1.16). This is a consequence of
the Implicit Function Theorem, see [?].

Often the state variables for a system are divided into two sets, the input variables,

(w1, . . . , wk) and output variables, (z1, . . . , zm), with constraints re-written in the form

F1(w1, . . . , wk) = z1
...

...
Fm(w1, . . . , wk) = zm.

(1.17)

The output variables are thought of as the being measured; the remaining variables must
then be determined by solving this system of equations. For a linear model this amounts to
solving a system of linear equations. We now consider some examples of physical systems
and their mathematical models.

Example 1.1.2. We would like to find the height of a mountain without climbing it. To
that end, the distance x between the point P and the base of the mountain, as well as the
angle θ are measured, see figure 1.2. If x and θ are measured exactly then the height h, of
the mountain is given by

h(x, θ) = x tan θ. (1.18)

Measurements are never exact, using the model and elementary calculus we can relate the
error in the measurement θ to the error in the computed value of h. Suppose that x is
measured exactly but there is an uncertainty ∆θ in the value of θ. Equation (1.15) gives
the linear approximation

h(x, θ + ∆θ) − h(x, θ) ≈ ∂h

∂θ
(x, θ)∆θ.

As ∂θh = x sec2 θ, the height, hm predicted from the measurement of the angle is given by

hm = x tan(θ + ∆θ) ≈ x(tan θ + sec2 θ∆θ).

The approximate value of the absolute error is

hm − h ≈ x
∆θ

cos2 θ
.

The absolute error is a number with the same units as h; in general it is not a very
interesting quantity. If, for example the true measurement were 10, 000m then an error of
size 1m would not be too significant. If the true measurement were 2m, then this error
would be significant. To avoid this obvious pitfall one normally considers the relative error.
In this problem the relative error is

hm − h

h
=

∆θ

cos2 θ tan θ
=

∆θ

sin θ cos θ
.
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P

x

hθ

Figure 1.2: Using to trigonometry to find the height of a mountain.

Generally the relative error is the absolute error divided by the correct value. It is a dimen-
sionless quantity that gives a quantitative assessment of the accuracy of the measurement.
If the angle θ is measured from a point too near to or too far from the mountain, i.e. θ is very
close to 0 or π/2 then small measurement errors result in a substantial loss of accuracy. A
useful feature of a precise mathematical model is the possibility of estimating how errors in
measurement affect the accuracy of the parameters we wish to determine. In exercise 1.1.10
we consider how to estimate the error entailed in using a linear approximation.

Example 1.1.3. In a real situation we cannot measure the distance to the base of the
mountain. Suppose that we measure the angles, θ1 and θ2 from two different points, P1

and P2 as well as the distance x2−x1 between the two points, as shown in the figure below.

P1

P2 1

h

x
2

x
1

θ2 θ

Figure 1.3: A more realistic measurement.

From the previous example we know that

h = x1 tan θ1,

h = x2 tan θ2.
(1.19)

Using these equations and elementary trigonometry we deduce that

x1 =
x2 − x1

[

tan θ1

tan θ2
− 1

] (1.20)

which implies that

h = x1 tan θ1

= (x2 − x1)
sin θ1 sin θ2

sin(θ1 − θ2)
.

(1.21)
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Thus h can be determined from θ1, θ2 and x2 − x1. With d = x2 − x1, equation (1.21)
expresses h as a function of (d, θ1, θ2). At the beginning of this example (x1, θ1, x2, θ2, h) were
the state variables describing our system. By the end these were replaced by (d, θ1, θ2, h).
The first three are directly measurable and the last is an explicit function of the others. The
models in this and the previous example, as expressed by the equations (1.21) and (1.18)
respectively, are non-linear models.

In this example there are many different ways that the model may fail to capture
important features of the physical situation. We now consider a few potentials problems.

(1). If the shape of a mountain looks like that in figure 1.4 and we measure the distance
and angle at the point P , we are certainly not finding the real height of the mountain.
Some a priori information is always incorporated in a mathematical model.

P

Figure 1.4: Not exactly what we predicted!

(2). The curvature of the earth is ignored. A more sophisticated geometric model is needed
to correct for such errors. This becomes a significant problem as soon as the distances,
x, x1, x2 are large compared to the distance to the horizon (about 25km for a 2 meter
tall person). The approximations used in the model must be adapted to the actual
physical conditions of the measurements.

(3). The geometry of the underlying measurements could be very different from the simple
Euclidean geometry used in the model. To measure the angles θ1, θ2 one would
normally use a transit to sight the peak of the mountain. If the mountain is far
away then the light, traveling from the mountain to the transit, passes through air of
varying density. The light is refracted by the air and therefore the ray path is not a
straight line, as assumed in the model. To include this effect would vastly complicate
the model. This is an important consideration in the very similar problem of creating
a map of the sky from earth based observations of stars and planets.

Analogous problems arise in medical imaging. If the wavelength of the energy used to
probe the human anatomy is very small compared to the size of the structures that are
present then it is reasonable to assume that the waves are not refracted. For example X-rays
can be assumed to travel along straight lines. For energies with wavelengths comparable
to the size of structures present in the human anatomy, this assumption is simply wrong.
The waves are then bent and diffracted by the medium and the difficulty of modeling the
ray paths is considerable. This is an important issue in ultrasound imaging which remains
largely unresolved.
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Example 1.1.4. Refraction provides another example of a simple physical system. Suppose
that we have two fluids in a tank as shown in the figure and would like to determine the
height of the interface between them. Suppose first of all that the refractive indices of the
fluids are known. Let n1 be the refractive index of the upper fluid and n2 the refractive
index of the lower one, Snell’s law states that

sin(θ1)

sin(θ2)
=

n2

n1
.

Let h denote the total height of the fluid, then

  

h1

h2

n1

n2

θ1

θ2

l

Figure 1.5: Using refraction to determine the height of an interface.

h1 + h2 = h.

The measurement we make is the total displacement l, of the light ray as it passes through
the fluids. It satisfies the relationship

h1 tan(θ1) + h2 tan(θ2) = l.

The heights h1 and h2 are easily determined from these three formulæ. The assumption
that we know n1 implies, by Snell’s law, that we can determine θ1 from a measurement of
the angle of the light ray above the fluid. If n2 is also known, then using these observations
we can determine θ2 as well:

sin(θ2) =
n1

n2
sin(θ1).

The pair (h1, h2) satisfies the 2 × 2-linear system

(

1 1
tan(θ1) tan(θ2)

)(

h1

h2

)

=

(

h
l

)

. (1.22)

In example 2.1.2 we consider a slightly more realistic situation where the refractive index
of the lower fluid in not known. By using more measurements n2 can also be determined.
It is the solution of a non-linear equation.

Exercises

Exercise 1.1.4. Prove the formulæ in (1.8).
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Exercise 1.1.5. Let ej ∈ R
n, j = 1, . . . , n denote the vector with a 1 in the j th place and

otherwise zero,

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

(1). Show that if x = (x1, . . . , xn) then

x =

n
∑

j=1

xjej.

(2). Use the previous part to prove the existence statement in Proposition 1.1.1, that
is, show that there is a vector yf so that f(x) = 〈x,yf 〉. Give a formula for yf .

(3). Show that the uniqueness part of the proposition is equivalent to the statement:
“If y ∈ R

n satisfies
〈x,y〉 = 0 for all x ∈ R

n

then y = 0.” Prove this statement.

Exercise 1.1.6. In this exercise we use calculus to prove the Cauchy-Schwarz inequality.
Let x,y ∈ R

n be non-zero vectors, define the function

F (t) = 〈x + ty,x + ty〉.

Use calculus to find the value of t where F assumes its minimum value. By using the fact
that F (t) ≥ 0 for all t deduce the Cauchy-Schwarz inequality.

Exercise 1.1.7. Show that (1.11) is a consequence of the Cauchy-Schwarz inequality. Hint:
Consider ‖x + y‖2.

Exercise 1.1.8. Let a be a non-zero n-vector. Show that there is a collection of n − 1
linearly independent n-vectors, {v1, . . . ,vn−1} so that x solves 〈a,x〉 = 0 if and only if

x =

n−1
∑

i=1

civi,

for some real constants {c1, . . . , cn−1}.
Exercise 1.1.9. Let {a1, . . . ,ak} be linearly independent n-vectors. Show that there is a
collection n − k linearly independent n-vectors, {v1, . . . ,vn−k} so that x solves

〈aj,x〉 = 0 for j = 1, . . . , k

if and only if

x =

n−k
∑

i=1

civi,

for some real constants {c1, . . . , cn−k}. Hint: Use the previous exercise and an induction
argument.
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Exercise 1.1.10. If a function f has two derivatives then Taylor’s theorem gives a formula
for the error e(y) = f(x + y)− [f(x) + f ′(x)y]. There exists a z between 0 and y, such that

e(z) =
f ′′(z)y2

2
,

see (B.11). Use this formula to bound the error made in replacing h(x, θ + ∆θ) with
h(x, θ) + ∂θh(x, θ)∆θ. Hint: Find the value of z between 0 and ∆θ which maximizes the
error term.

Exercise 1.1.11. In example 1.1.3 compute the gradient of h to determine how the absolute
and relative errors depend on θ1, θ2 and d.

1.1.2 Infinitely many degrees of freedom

See: A.3, A.6.

In the previous section we examined some simple physical systems with finitely many
degrees of freedom. In these examples, the problem of determining the state of the system
from feasible measurements reduces to solving systems of finitely many equations in finitely
many unknowns. In imaging applications the state of a system is usually described by a
function or functions of continuous variables. These systems have infinitely many degrees
of freedom. In this section we consider several examples.

Example 1.1.5. ? Suppose that we would like to determine the shape of a planar region,
D that cannot be seen. The object is lying inside a disk and we can fire particles at the
object. Assume that the particles bounce off according to a simple scattering process. Each
particle strikes the object once and is then scattered along a straight line off to infinity. The
outline of the object can be determined by knowing the correspondence between incoming
lines, lin and outgoing lines, lout. Each intersection point lin ∩ lout lies on the boundary of
the object. Measuring {ljout} for finitely many incoming directions {ljin} determines finitely

many points {ljin∩ ljout} on the boundary of D. In order to use this finite collection of points
to make any assertions about the rest of the boundary of D, more information is required.
If we know that D consists of a single piece or component then these points would lie on a
single closed curve, though it might be difficult to decide in what order they should appear
on the curve. On the other hand, these measurements provide a lot of information about
convex regions.

Definition 1.1.3. A region D in the plane is convex if it has the following property: for each
pair of points p and q lying in D the line segment pq is also contained in D.

Convex regions have many special properties. If p and q are on the boundary of D then
the line segment pq lies inside of D. From this observation one can show that if {p1, . . . , pN}
are points on the boundary of a convex region then the smallest polygon with these points
as vertices lies entirely within D, see figure 1.7(a). Convexity can also be defined by a
property of the boundary of D : For each point p on the boundary of D there is a line lp
which passes through p but is otherwise disjoint from D. This line is called a support line
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D
p

q

(a) A convex region.

p

q

(b) A non-convex region.

Figure 1.6: Convex and non-convex regions.

through p. If the boundary is smooth at p then the tangent line to the boundary is the
unique support line. A line divides the plane into two half planes. Let lp be a support line
to D at p. Since D does not meet p it must lies entirely in one of the half planes determined
by lp, see figure 1.7.(b). If each support line meets the boundary of D at exactly one point
then the region is strictly convex.

(a) An inscribed polygon.

A support  line

The half space
containing D.

D

.

(b) A support line and half
space.

.

Figure 1.7: Further properties of convex regions.

Suppose that the object is convex and more is known about the scattering process, for
example that the angle of incidence is equal to the angle of reflection. From a finite number
of incoming and outgoing pairs, {(liin, liout) : i = 1, . . . , N} we can now determine an
approximation to D with an estimate for the error. The intersection points, pi = liin ∩ liout

lie on the boundary of the convex region, D. If we use these points as the vertices of a
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polygon, P in
N then as remarked above, P in

N is completely contained within D. On the other
hand, as the angle of incidence equals the angle of reflection we can also determine the
tangent lines {lpi

}to the boundary of D at the points {pi}. These lines are support lines for
D. Hence by intersecting the half planes which contain D, defined by these tangent lines, we
obtain another convex polygon, P out

N which contains D. Thus with these N -measurements
we obtain the both an inner and outer approximation to D :

P in
N ⊂ D ⊂ P out

N .

A convex region is determined by its boundary and each point on the boundary is,
in effect a state variable. Therefore the collection of convex regions is a system with
infinitely many degrees of freedom. A nice description for the state space of convex regions
is developed in section 1.2.2. As we have seen, a convex region can be approximated by
polygons. Once the number of sides is fixed, then we are again considering a system with
finitely many degrees of freedom. In all practical problems, a system with infinitely many
degrees of freedom must eventually be approximated by a system with finitely many degrees
of freedom.

θ

θ

(a) The angle of incidence equals
the angle of reflection.

–2

–1

0

1

2

–2 –1 1 2

(b) The outer approximation as an inter-
section of half spaces.

Figure 1.8: Using particle scattering to determine the boundary of a convex region.

Remark 1.1.1. For a non-convex body the above method does not work as the correspon-
dence between incoming and outgoing lines can be quite complicated: some incoming lines
may undergo multiple reflections before escaping, in fact some lines might become perma-
nently trapped.

Example 1.1.6. Suppose that the surface of a sea is mapped by coordinates (x, y) belonging
to a region D ⊂ R

2. The depth of the bottom of the sea is described by a function h(x, y).
One way to determine h would be to drop a weighted string until it hits the bottom. There
are problems with this method: 1. It is difficult to tell when the weight hits the bottom. 2.
Unknown underwater currents may carry the string so that it does not go straight down.
A somewhat less direct approach would be to use sonar to measure the distance to the
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bottom. The physical principle underlying the measurement is that the speed of sound
is determined by the density and temperature of the water which are in turn determined
by the depth. Let c(z) denote the known speed of sound, as a function of the depth. A
speaker underneath the boat emits a loud, short pulse of sound and the time it takes for
the sound to return is measured. Here we assume that the sound travels in a straight line
to the bottom and the microphone only detects the direct reflection, traveling back along
the straight line. Using c(z) the transit time can be related to the depth.

outgoing
pulse

measured
echo

Figure 1.9: Using sound to measure depth.

A simple model, valid for shallow seas, is that the speed of sound is a constant, c. The
measurement, T is the time it takes for the sound pulse to go down and back,

2h = cT.

This assumes that the boat is stationary from the time the pulse is emitted until the return
is received. If T (x, y) is the return time at (x, y) ∈ D then the depth h(x, y) is given by

h(x, y) =
cT (x, y)

2
.

In reality such continuous measurements are not possible. Instead the boat is placed at
a finite set of locations P = {(xj , yj) : j = 1, . . . , N} and T (xj, yj) is measured. These
measurements determine the finite set of values

h(xj , yj) =
cT (xj , yj)

2
, j = 1, . . . , N.

Again, what use is a finite set of values? Without qualitative, a priori information
about the nature of the function h, this finite data set is indeed useless! On the other hand
it is reasonable to assume that h is a continuous function of (x, y). With this assumption,
values of h for points not in P can be interpolated from the measured values. The minimum
necessary separation between the points in P is determined by a quantitative assessment
of how continuous h is expected to be. Suppose it is known that there is a constant M so
that

|h(x, y) − h(x′, y′)| ≤ M
√

(x − x′)2 + (y − y′)2.
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If every point (x, y) is within d of a point (xj , yj) in P then we have the estimate

|h(x, y) − h(xj , yj)| ≤ Md.

This then gives an estimate for the accuracy of the interpolated values. A small value of
M indicates that the depth is varying slowly, while a large value indicates rapid variations.
In the former case a larger value of d provides acceptable results, while in the latter case a
smaller value of d is needed to get an accurate picture of the bottom.

Example 1.1.7. Now assume that the sea, in the previous example, is one-dimensional,
but that the sound speed is not constant. To use the measurements described above to
determine the depth h(x) requires more mathematical apparatus. Let z(t) denote the depth
of the sound pulse at a time t after it is emitted. Using calculus we can express the assertion
that the ‘speed of sound at depth z is c(z)’ as a differential equation

dz

dt
(t) = c(z(t)). (1.23)

Formally this is equivalent to
dz

c(z)
= dt.

The integral of 1/c(z) defines a function,

G(h)
d
=

h
∫

0

dz

c(z)
. (1.24)

From the derivation of (1.23) it follows that the transit time, T (h) for a pulse to reach
depth h and return is 2G(h).

The function G is increasing and therefore its inverse is well defined. Using G−1 we can
determine the depth, h from the available measurement, T

h = G−1

(

T

2

)

.

To use this model, the function G−1 needs to be explicitly determined. If c(z) is simple
enough then an analytic formula for G might be available. Otherwise the integral defining
G is computed for a finite collection of depths {h1, . . . , hm}, with ti = G(hi). From this
table of values, the inverse function is also known for a finite collection of times

hi = G−1(ti).

If c(z) is a differentiable function, then a linear approximation of the form

c(z) ≈ a + bz

is valid for small values of z. Integrating gives

G(h) ≈ log(1 +
bh

a
),
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solving for G−1(T ) we find

h(T ) ≈ a

b
(eb T

2 − 1).

Using Taylor’s formula, (B.5) for ex gives

h(T ) ≈ a
T

2
+

baT 2

8
+ O(T 3).

Here as usual O(T 3) is an error term which goes to zero, as T goes to zero, at the same
rate as T 3. This agrees, to leading order with the previous computation.

Example 1.1.8. The one-dimensional model in the previous example can be used to solve the
two-dimensional problem. Suppose that the area we are interested in mapping corresponds
to the rectangle [−1, 1]×[−1, 1] in the (x, y)-map coordinates. For each y define the function
of one variable

hy(x)
d
= h(x, y).

Knowing the collection of functions {hy : y ∈ [−1, 1]} for x ∈ [−1, 1] is evidently exactly the
same thing as a knowing h, for (x, y) ∈ [−1, 1] × [−1, 1]. Because the measuring apparatus
observes only the sound returning on the straight line from the boat to the bottom of the
sea, the analysis in the previous example applies to allow the determination of hy(x) from
a measurement of Ty(x),

h(x, y) = hy(x) = G−1

(

Ty(x)

2

)

.

In this way a two-dimensional problem is sliced into simpler one dimensional problems. In
real applications, only finitely many measurements are made. A typical strategy if to pick
an equally spaced set of y-values,

yk =
k

N
, k = −N, . . . , N

and determine hyk
(xj) at finitely many equally spaced x-values

xj =
j

N
j = −N, . . . , N.

These examples capture many of the features that we will encounter in X-ray tomog-
raphy: by using a mathematical model for the measurements, an inaccessible, physical
quantity can be determined using feasible measurements. The model is itself an approxi-
mation, but is subject to improvements.

Exercises

Exercise 1.1.12. Find state variables to describe the set of polygons with n-vertices in
the plane. For the case of triangles, find the relations satisfied by your variables. Extra
credit: Find a condition, in terms of your parameters implying that the polygon is convex.

Exercise 1.1.13. Suppose that D1 and D2 are convex regions in the plane. Show that
their intersection D1 ∩ D2 is also a convex region.
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Exercise 1.1.14. ∗ Suppose that D is a possibly non-convex region in the plane. Define a
new region D′ as the intersection of all the half spaces which contain D. Show that D = D ′

if and only if D is convex.

Exercise 1.1.15. Find an example of a planar region such that at least one particle tra-
jectory is trapped forever.

Exercise 1.1.16. Why is G in example 1.1.7 a monotonely increasing function?

Exercise 1.1.17. Suppose that c(z) is piecewise constant, so that

c(z) =

{

c1 if 0 ≤ z ≤ z1,

c2 if z1 < z.

Find G and G−1.

Exercise 1.1.18. In example 1.1.7 why is it reasonable to model c(z) as a linear function
under the assumption that it is a differentiable function? Suggest a method for determining
b.

Exercise 1.1.19. In examples 1.1.6– 1.1.8 it is assumed that all returns not arriving on
the straight line path from the bottom of the ocean are ignored. Analyze the problems that
result if return signals are accepted from all directions. What impact would this have on
using the slicing method to reduce the dimensionality of the problem?

Exercise 1.1.20. Repeat the analysis in example 1.1.7 assuming that the boat is traveling
at constant velocity v. Continue assuming that only returns meeting the bottom of the boat
at right angles are detected.

1.2 A simple model problem for image reconstruction

The problem of image reconstruction in X-ray tomography is sometimes described as re-
constructing an object from its “projections.” Of course these are projections under the
illumination of X-ray “light.” In this section we consider the analogous, but simpler prob-
lem, of determining the outline of an convex object from its shadows. As is also the case
in medical applications, we consider a two-dimensional problem. Let D be a convex region
in the plane. Imagine that a light source is placed very far from D. Since the light source
is very far away, the rays of light are all traveling in essentially the same direction. We
can think of them as a collection of parallel lines. We want to measure the shadow that D
casts for each position of the light source. To describe the measurements imagine that a
screen is placed on the “other side” of D perpendicular to the direction of the light rays,
see the figure below. In a real apparatus sensors would be placed on the screen, allowing
us to determine where the shadow begins and ends.
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     Shadow

D

Figure 1.10: The shadow of a convex region

The region, D blocks a certain collection of light rays and allows the rest to pass.
Locating the shadow amounts to determining the “first” and “last” lines in this family of
parallel lines to intersect D. To completely describe the object we need to rotate the source
and detector through π radians, measuring, at each angle, where the shadow begins and
ends.

The first and last lines to intersect a region just meet it along its boundary. These lines
are therefore tangent to the boundary of D. The problem of reconstructing a region from
its shadows is mathematically the same as the problem of reconstructing a region from a
knowledge of the tangent lines to its boundary. As a first step in this direction we need a
good way to organize our measurements. To that end we give a description for the space

of lines in the plane.

1.2.1 The space of lines in the plane?

A line in the plane is a set of points which satisfies an equation of the form

ax + by = c

where a2 + b2 6= 0. We could use (a, b, c) to parametrize the set of lines, but note that we
get the same set of points if we replace this equation by

a√
a2 + b2

x +
b√

a2 + b2
y =

c√
a2 + b2

.

The coefficients, ( a√
a2+b2

, b√
a2+b2

) define a point ω on the unit circle, S1 ⊂ R
2, and the

constant c√
a2+b2

can be any number. The lines in the plane are parametrized by a pair

consisting of a unit vector ω = (ω1, ω2) and a real number t. The line lt,ω is the set of points
satisfying the equation

〈(x, y), ω〉 = t.

Very often it is convenient to parametrize the points on the unit circle by a real number,
to that end we set

ω(θ) = (cos(θ), sin(θ)). (1.25)
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Since cos and sin are 2π-periodic it clear that ω(θ) and ω(θ+2π) are the same point on the
unit circle. Using this notation the line lt,θ = lt,ω(θ) is the set of solutions to the equation

〈(x, y), (cos(θ), sin(θ))〉 = t.

Both notations are used in the sequel.
While the parameterization provided by (t, ω) is much more efficient than that provided

by (a, b, c) note that the set of points satisfying this equation is unchanged if (t, ω) is replaced
by (−t,−ω). Thus, as sets,

lt,ω = l−t,−ω. (1.26)

It is not difficult to show that these are the only pairs (t, ω), (t′, ω′) for which lt,ω = lt′,ω′ .
The vector

ω̂ = (−ω2, ω1),

is perpendicular to ω. For any real number s,

〈ω, (tω + sω̂)〉 = t

and therefore we can describe lt,ω parametrically as the set of points

lt,ω = {tω + sω̂ | s ∈ (−∞,∞)}.

Both ω̂ and −ω̂ are unit vectors which are perpendicular to ω; ω̂ is singled out by the
condition that the 2 × 2 matrix,

(

ω1 −ω2

ω2 ω1

)

,

has determinant +1. The vector ω̂ defines the “positive” direction or orientation along the
line lt,ω. This shows that the pair (t, ω) determines an oriented line. We summarize these
computations in a proposition.

Proposition 1.2.1. The pairs (t, ω) ∈ R × S1 are in one-to-one correspondence with the

set of oriented lines in the plane.

unit circle

 t

θ

l

ω
^

θ+π/2
ω

Figure 1.11: Parameterization of oriented lines in the plane.

The vector ω is the direction orthogonal to the line and the number t is called the affine

parameter of the line, |t| is the distance from the line to the origin of the coordinate system.
The pair (t, ω) defines two half planes

H+
t,ω = {x ∈ R

2 | 〈x, ω〉 > t} and H−
t,ω = {x ∈ R

2 | 〈x, ω〉 < t}, (1.27)



22 CHAPTER 1. MEASUREMENTS AND MODELING

the line lt,ω is the common boundary of these half planes. Facing along the line lt,ω in the
direction specified by ω̂, the half plane H−

t,ω lies to the left.

Exercises

Exercise 1.2.1. Suppose that (t, ω) and (t′, ω′) are different points in R × S1 such that
lt,ω = lt′,ω′ . Show that (t, ω) = (−t′,−ω′).

Exercise 1.2.2. Show that

|t| = min{
√

x2 + y2 : (x, y) ∈ lt,ω}.

Exercise 1.2.3. Show that if ω is fixed then the lines in the family {lt,ω : t ∈ R} are
parallel.

Exercise 1.2.4. Show that every line in the family {lt,ω̂ : t ∈ R} is orthogonal to every
line in the family {lt,ω : t ∈ R}.
Exercise 1.2.5. Each choice of direction ω defines a coordinate system on R

2,

(x, y) = tω + sω̂.

Find the inverse, expressing (t, s) as functions of (x, y). Show that the area element in the
plane satisfies

dxdy = dtds.

1.2.2 Reconstructing an object from its shadows

Now we can quantitatively describe the shadow. Because there are two lines in each family
of parallel lines which are tangent to the boundary of D we need a way to select one of
them. To do this we choose an orientation for the boundary of D; this operation is familiar
from Green’s theorem in the plane. The positive direction on the boundary is selected so
that, when facing in this direction the region lies to the left; the counterclockwise direction
is, by convention the positive direction, see figure 1.12.

Fix a source position ω(θ); in the family of parallel lines {lt,ω(θ) : t ∈ R} there are two
values of t, t0 < t1 such that the lines lt0,ω(θ) and lt1,ω(θ) are tangent to the boundary of
D, see figure 1.12. Examining the diagram it is clear that the orientation of the boundary
at the point of tangency and that of the oriented line agree for t1, and are opposite for t0.
Define hD, the shadow function of D by setting

hD(θ) = t1 and hD(θ + π) = −t0. (1.28)

The shadow function is completely determined by source positions covering half the circle,
or by values of θ belonging to an interval of length π. Because ω(θ) = ω(θ+2π) the shadow
function is also regarded as a 2π-periodic function defined on the whole real line. The
mathematical formulation of reconstruction problem is: Can the boundary of the region D
be determined from hD?

The line lhD(θ),ω(θ) is given parametrically by

{hD(θ)(cos(θ), sin(θ)) + s(− sin(θ), cos(θ)) | s ∈ (−∞,∞)}.
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0

     Shadow

D ω

t
1

t

Figure 1.12: The measurement of the shadow

To determine the boundary of D it would suffice to determine the point of tangency of
lhD(θ),ω(θ) with the boundary of D, in other words we would like to find the function s(θ)
so that for each θ,

(x(θ), y(θ)) = hD(θ)(cos(θ), sin(θ)) + s(θ)(− sin(θ), cos(θ)) (1.29)

is a point on the boundary of D.
The function s(θ) is found by recalling that, at the point of tangency, the direction of the

tangent line to D is ω̂(θ). For a curve in the plane given parametrically by (x(θ), y(θ)) the
direction of the tangent line at a point θ0 is the same as that of the vector (x′(θ0), y

′(θ0)).
Differentiating the expression given in (1.29) and using the fact that ∂θω = ω̂ we find that

(x′(θ), y′(θ)) = (h′
D(θ) − s(θ))ω(θ) + (hD(θ) + s′(θ))ω̂(θ). (1.30)

Since the tangent line at (x(θ), y(θ)) is parallel to ω̂(θ) it follows from (1.30) that

h′
D(θ) − s(θ) = 0. (1.31)

This gives a parametric representation for the boundary of a convex region in terms of
its shadow function: If the shadow function is hD(θ) then the boundary of D is given
parametrically by

(x(θ), y(θ)) = hD(θ)ω(θ) + h′
D(θ)ω̂(θ). (1.32)

Note that we have assumed that D is strictly convex and the hD(θ) is a differentiable
function. This is not always true, for example if the region D is a polygon then neither
assumption holds.

Let D denote a convex region and hD its shadow function. We can think of D 7→ hD

as a mapping from convex regions in the plane to 2π-periodic functions. It is reasonable to
enquire if every 2π-periodic function is the shadow function of a convex region. The answer
to this question is no. For strictly convex regions with smooth boundaries we are able to
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characterize the range of this mapping. If h is twice differentiable then the tangent vector
to the curve defined by

(x(θ), y(θ)) = h(θ)ω(θ) + h′(θ)ω̂(θ) (1.33)

is given by
(x′(θ), y′(θ)) = (h′′(θ) + h(θ))ω̂(θ).

In our construction of the shadow function we observed that the tangent vector to the curve
at (x(θ), y(θ)) and the vector ω̂(θ) point in the same direction. From our formula for the
tangent vector we see that this implies that

h′′(θ) + h(θ) > 0 for all θ ∈ [0, 2π]. (1.34)

This gives a necessary condition for a twice differentiable function h to be the shadow
function for a strictly convex region with a smooth boundary. Mathematically we are
determining the range of the map that takes a convex body D ⊂ R

2 to its shadow function
hD, under the assumption that hD is twice differentiable. This is a convenient mathematical
assumption, though in an applied context it is likely to be overly restrictive.

Exercises

Exercise 1.2.6. Justify the definition of hD(θ+π) in (1.28) by showing that the orientation
of the boundary at the point of tangency with lt0 ,ω(θ) agrees with that of l−t0,ω(θ+π).

Exercise 1.2.7. Suppose that Dn is a regular n-gon. Determine the shadow function
hDh

(θ).

Exercise 1.2.8. Suppose that h is a 2π-periodic, twice differentiable function that sat-
isfies (1.34). Show that the curve given by (1.33) is the boundary of a strictly convex
region.

Exercise 1.2.9. How is the assumption that D is strictly convex used in the derivation
of (1.31)?

Exercise 1.2.10. If h is a differentiable function then equation (1.33) defines a curve. By
plotting examples, determine what happens if the condition (1.34) is not satisfied.

Exercise 1.2.11. Suppose that h is a function satisfying (1.34). Show that the area of Dh

is given by the

Area(Dh) =
1

2

2π
∫

0

[(h(θ))2 − (h′(θ))2]dθ.

Explain why this implies that a function satisfying (1.34) also satisfies the estimate

2π
∫

0

(h′(θ))2dθ <

2π
∫

0

(h(θ))2dθ.
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Exercise 1.2.12. Let h be a smooth 2π-periodic function which satisfies (1.34). Prove
that the curvature of the boundary of the region with this shadow function, at the point
h(θ)ω(θ) + h′(θ)ω̂(θ) is given by

κ(θ) =
1

h(θ) + h′′(θ)
. (1.35)

Exercise 1.2.13. Suppose that h is a function satisfying (1.34). Show that another para-
metric representation for the boundary of the region with this shadow function is

θ 7→



−
θ

∫

0

(h(s) + h′′(s)) sin(s)ds,

θ
∫

0

(h(s) + h′′(s)) cos(s)ds



 .

Exercise 1.2.14. In this exercise we determine which positive functions κ defined on S 1

are the curvatures of closed strictly convex curves. Prove the following result: A positive
function κ on S1 is the curvature of a closed, strictly convex curve (parametrized by its
tangent direction) if and only if

∞
∫

0

sin(s)ds

κ(s)
= 0 =

∞
∫

0

cos(s)ds

κ(s)
.

Exercise 1.2.15. Let D be a convex region with shadow function hD. For a vector v ∈ R
2

define the translated region

Dv = {(x + v : x ∈ D}.

Find the relation between hD and hDv . Explain why this answer is inevitable in light of
the formula (1.35) for the curvature.

Exercise 1.2.16. Let D be a convex region with shadow function hD. For a rotation

A =

(

cos φ − sinφ
sinφ cos φ

)

define the rotated region

DA = {Ax :: x ∈ D}.

Find the relation between hD and hDA .

Exercise 1.2.17. ∗ If h1 and h2 are 2π-periodic functions satisfying (1.34) then they are
the shadow functions of convex regions D1 and D2. The sum, h1 + h2 also satisfies (1.34)
and so is the shadow function of a convex region, D3. Describe, geometrically how D3 is
determined by D1 and D2.

Exercise 1.2.18. ∗ Suppose that D is non-convex planar region. The shadow function hD

is defined as before. What information about D in encoded in hD?
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1.2.3 Approximate reconstructions

See: A.7.2.

In a realistic situation the shadow function is measured at a finite set of angles {θ1, . . . , θm}.
How can the data, {hD(θ1), . . . , hD(θm)}, be used to construct an approximation to the re-
gion D. We consider two different strategies; each relies on the special geometric properties
of convex regions. Recall that a convex region always lies in one of the half planes de-
termined by the support line at any point of its boundary. Since the boundary of D and
lh(θ),ω(θ) have the same orientation at the point of contact, it follows that D lies in each of
the half planes

H−
h(θj),ω(θj)

, j = 1, . . . ,m,

see (1.27). As D lies in each of these half planes it also lies in their intersection. This
defines a convex polygon

Pm =

m
⋂

j=1

H−
h(θj),ω(θj)

which contains D. This polygon provides one sort of approximation for D from the mea-
surement of a finite set of shadows. It is a stable approximation to D because small errors
in the measurements of either the angles θj or the corresponding affine parameters h(θj)
lead to small changes in the approximating polygon.

The difficulty with using the exact reconstruction formula (1.32) is that h is only known
at finitely many values, {θj}. From this information it is not possible to exactly compute
the derivatives, h′(θj). We could use a finite difference approximation for the derivative to
determine a finite set of points which approximate points on the boundary of D :

(xj , yj) = h(θj)ω(θj) +
h(θj) − h(θj+1)

θj − θj+1
ω̂(θj).

If the measurements were perfect, the boundary of D smooth and the numbers {|θj −θj+1|}
small then the finite difference approximations to h′(θj) would be accurate and these points
would lie close to points on the boundary of D. Joining these points, in the given order
gives a polygon, P ′ which approximates D. If the points could be computed exactly then P ′

would be contained in D. With approximate values this cannot be asserted with certainty,
though under the assumptions above, P ′ should be largely contained within D.

This gives a different way to reconstruct an approximation to D from a finite set of
measurements. This method is not as robust as the first technique because it requires

the measured data to be differentiated. In order for the finite difference
h(θj)−h(θj+1)

θj−θj+1
to

be a good approximation to h′(θj) it is generally necessary for |θj − θj+1| to be small.
Moreover the errors in the measurements of h(θj) and h(θj+1) must also be small compared

to |θj − θj+1|. This difficulty arises in solution of the reconstruction problem in X-ray
CT, the exact reconstruction formula calls for the measured data to be differentiated. In
general, measured data is corrupted by random noise, and random noise is usually “non-
differentiable.”
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This means that measurements of a function must be regularized before they can be
used to approximate derivatives. One way to handle this is to improve the quality of indi-
vidual measurements. One assumes that the errors in individual measurements have “mean
zero:” if the same measurement is repeated many times then the average of the individual
measurements should approach the true value. This is the approach taken in magnetic res-
onance imaging. Another possibility is to make a large number of measurements at closely
spaced angles {(hj , j∆θ) : j = 1, . . . , N} which are then “averaged” to give less noisy
approximations on a coarser grid. There are many ways to do the averaging. One way is
to find a differentiable function, H belonging to a family of functions of dimension M < N
that minimizes the square error

e(H) =

N
∑

j=1

(hj − H(j∆θ))2.

For example H could be taken to be a polynomial of degree M − 1, or a continuously
differentiable, piecewise cubic function. The reconstruction formula can be applied to H
to obtain a different approximation to D. The use of averaging reduces the effects of noise
but fine structure in the boundary is also blurred by any such procedure.

Exercises

Exercise 1.2.19. Suppose that the angles {θj} can be measured exactly but there is an
uncertainty of size ε in the measurement of the affine parameters, h(θj). Find a polygon
Pm,ε which gives the best possible approximation to D and certainly contains D.

Exercise 1.2.20. Suppose that we know that |h′′(θ)| < M, and the measurement errors
are bounded by ε > 0. For what angle spacing is the error in using a finite difference
approximation for h′ due to the uncertainty in the measurements equal to that caused by
the non-linearity of h itself.

1.2.4 Can an object be reconstructed from its width?

To measure the location of the shadow requires an expensive detector which can accurately
locate a transition from light to dark. It would be much cheaper to build a device, similar
to the exposure meter in a camera, to measure the length of the shadow region without
determining its precise location. It is therefore an interesting question whether or not the
boundary of a region can be reconstructed from measurements of the widths of its shadows.
Let wD(θ) denote the width of the shadow in direction θ, a moments consideration shows
that

wD(θ) = hD(θ) + hD(θ + π). (1.36)

Using this formula and exercise 1.2.8 it is easy to show that wD does not determine D.
From exercise 1.2.8 we know that if hD has two derivatives such that h′′

D + hD > 0 then
hD(θ) is the shadow function of a strictly convex region. Let e be an odd smooth function,
i.e. e(θ) + e(θ + π) ≡ 0 such that

h′′
D + hD + e′′ + e > 0.
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If e 6≡ 0 then hD + e is the shadow function for D′, a different strictly convex region.
Observe that D′ has the same width of shadow for each direction as D, that is

wD(θ) = (hD(θ) + e(θ)) + (hD(θ + π) + e(θ + π)) = wD′(θ).

To complete this discussion note that any function with a Fourier representation of the
form

e(θ) =

∞
∑

j=0

[aj sin(2j + 1)θ + bj cos(2j + 1)θ]

is an odd function. This is an infinite-dimensional space of functions. This implies that if
wD(θ) is the “width of the shadow” function for a convex region D then there is an infinite
dimensional set of regions with the same “width of the shadow” function. Consequently
the simpler measurement is inadequate to reconstruct the boundary of a convex region.
Figure 1.13 shows the unit disk and another region which has constant “shadow width”
equal to 2.

Figure 1.13: Two regions of constant width 2

Exercises

Exercise 1.2.21. Justify the formula (1.36) for the shadow width.

Exercise 1.2.22. Show that the width function satisfies w ′′
D + wD > 0.

Exercise 1.2.23. Is it true that every twice differentiable, π-periodic function, w satisfying
w′′ + w > 0 is the width function of a convex domain?

Exercise 1.2.24. Our motivation for considering whether or not a convex body is de-
termined by the width of its shadows was to replace our expensive detector, which can
determine where a shadow begins and ends, with a less expensive detector. The cheaper
detector can only measure the width of the covered region. Can you find a way to use a
detector which only measures the length of an illuminated region to locate the edge of the
shadow? Hint: Cover only half of the detector with photosensitive material.
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1.3 Conclusion

By examining a large collection of examples we have seen how physical systems can be
described using mathematical models. The problem of determining the state of the system
from measurements is replaced by that of solving equations or systems of equations. It
is important to keep in mind that mathematical models are just that, models, often toy
models. A good model must satisfy two opposing requirements: the model should accurately
depict the system under study while at the same time being simple enough to be usable.
In addition it must also have accurate, finite dimensional approximations.

In mathematics, problems of determining the state of a physical system from feasible
measurements are gathered under the rubric of inverse problems. The division of problems
into inverse problems and direct problems is often a matter of history. Usually a physical
theory which models how the state of the system determines feasible measurements preceded
a description of the inverse process: how to use measurements to determine the state of
the system. Although very simple, example 1.1.6 is typical. Formula (2.17) describes the
solution to the direct problem: the determination of the transit time from a knowledge of
the sound speed and the depth. The inverse problem asks for a determination of the depth
from a knowledge of the sound speed and the transit time. While many of the problems
which arise in medical imaging are considered to be inverse problems, we do not give any
systematic development of this subject. The curious reader is referred to the very nice
article by Joe Keller, [41] which contains analyses of many classical inverse problems.

The models used in medical imaging usually involve infinitely many degrees of freedom.
The state of the system is described by a function of continuous variables. Ultimately of
course only a finite number of measurements can be made and only a finite amount of
time is available to process them. Our analysis of the reconstruction process in X-ray CT
passes through several stages. We begin with a description of the complete, perfect data
situation. The measurement is described by a function on the space of lines. By finding
a very explicit inversion formula we show that the state of the system can be determined
from these measurements. The main tool in this analysis is the Fourier transform. We
next consider the consequences of having only discrete samples of these measurements.
This leads us to the Fourier series. After introducing the basic concepts, we consider the
relationship between the Fourier transform and the Fourier series. With all the basic tools
in hand we next study the actual algorithms used in practical imaging machines. Up to
this point we have not considered the effects of noise. Probability theory is the language of
noise analysis. The book concludes with a brief introduction to this subject and an analysis
of the effects of noise on the quality of an approximate image, reconstructed from finitely
many measurements.

In the next chapter we quickly review linear algebra, recasting some familiar concepts
in the language of measurement. We also introduce the convolution product which provides
a very flexible mathematical model for measurement and filtering processes.
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Chapter 2

Some fundamental mathematics

As we have seen, using measurements to determine other quantities requires the solution
of systems of equations. Sometimes we need to solve differential equations and sometimes
algebraic equations. In almost all practical applications one is eventually reduced to solving
systems of linear equations. This is true even for physical systems which are described by
non-linear equations. As we saw in section 1.1.1, non-linear equations may be approximated
by linear equations. A non-linear equation is usually solved iteratively where the iteration
step involves the solution of the approximating linear system. There are many reasons why
linear equations and linear models are ubiquitous. From the pragmatic point of view, there
is a “complete” mathematical theory for systems of linear equations. One has necessary
and sufficient conditions for linear equations to have solutions, a description of the space
of solutions when they exist and practical algorithms for finding them. This is not true
even for the simplest families of non-linear equations. On a more conceptual level, for
systems with some sort of intrinsic smoothness, a linear model often suffices to describe
small deviations from an equilibrium state.

In this chapter we review some basic concepts from linear algebra, in particular the
theory of systems of linear equations. This is not intended to serve as a text on finite
dimensional linear algebra but rather to situate these familiar concepts in the context
of measurement problems. A more complete introduction to theory of vector spaces is
presented in Appendix A.2. The systems which arise in medical imaging are not usually
finite dimensional. We close this chapter by introducing the convolution product. This
is a bilinear operation which provides a model for many of the measurement and filtering
processes one encounters in medical imaging.

2.1 Linear equations and linear maps

Suppose that the state of a system is described by the variables (x1, . . . , xn; y1, . . . , ym) or
more concisely by (x;y) with x ∈ R

n and y ∈ R
m. Here x is regarded as an input variable

and y is regarded as an output variable. The model for the system is expressed by the

31
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linear equations,
a11x1 + a12x2+ · · · + a1nxn = y1

a21x1 + a22x2+ · · · + a2nxn = y2
...

...
...

am1x1 + am2x2+ · · · + amnxn = ym.

(2.1)

Before proceeding with our analysis we first need to simplify the notation. It is very
cumbersome to have to work with complicated expressions like (2.1), instead we use stan-
dard matrix and vector notation. Let a denote the m×n array of numbers (aij)i=1...m,j=1...n,
x an n-vector and y an m-vector. The system of equations (2.1) is concisely expressed as

ax = y, (2.2)

where ax denotes the matrix product. We briefly recall the properties of matrix multipli-
cation. Let x1 and x2 be n-vectors, then

a(x1 + x2) = ax1 + ax2

and for any number c
a(cx1) = c(ax1).

In other words the map from R
n to R

m defined by x 7→ ax is linear. The state space for
the system is the graph of this linear transformation,

{(x;ax) : x ∈ R
n}.

Let ai = (ai1, . . . , ain) denote the ith row of a. The equations in (2.1) can also be
rewritten

〈a1,x〉 = y1

...

〈am,x〉 = ym.

(2.3)

The inner product 〈ai,x〉 is interpreted as the outcome of the ith measurement when the
system is in the state described by x. The matrix a is called the measurement matrix.
The state of the system is determined by x, which can take any value in R

n. The output
variables y are determined by (2.2); the question of principal interest is the extent to which
these measurements determine the state. If the rows of a are linearly dependent then there
is some index l and constants {ci} so that

al =
∑

i6=l

ciai.

By linearity this means that

〈al,x〉 =
∑

i6=l

cj〈ai,x〉.

In other words, the outcome of the lth measurement is already determined by the others.
It is not an independent measurement and, in pure mathematics, would be regarded as



2.1. LINEAR EQUATIONS AND LINEAR MAPS 33

redundant information. In applications, measurement error and noise make it useful to
repeat experiments, so such a measurement might very well be retained.

There is a final way to rewrite (2.1). If

aj =







a1j

...
amj







denotes the jth column of a then (2.1) is equivalent to

x1a
1 + · · · + xna

n = y.

In this form it is clear that the set of possible outcomes of these measurements is the
subspace of R

m spanned by the columns of a. This is the range of the linear transformation
a.

There are three questions which require answers:

Q1: Existence:

For a given m-vector (y1, . . . , ym) does there exist an n-vector (x1, . . . , xn) which
satisfies the equations in (2.1)?

Q2: Uniqueness:

When a solution exists is it unique? More generally, describe the space of solutions.

Q3: Stability:

How sensitive is the solution to small variations in the measurement matrix a or
the right hand side y?

It is a somewhat unexpected, but very important fact that these issues are, in practice,
rather independent of one another. For applications it is also necessary to have an algorithm
to find approximate solutions of (2.1) and criteria to select a solution when there is more
than one.

2.1.1 Solving linear equations

Suppose that x0 is a solution of the equation ax = 0 and x1 is a solution of the equation
ax1 = y. By linearity it follows that

a(cx0 + x1) = cax0 + ax1 = ax1 = y for any c ∈ R.

If y = 0 as well then we conclude that the set of solutions to the equation

ax = 0

is a linear subspace, that is if x0 and x1 solve this equation then so does x0 + x1 as well as
cx0, for any number c. This subspace is called the null space or kernel of a. It is denoted
by ker(a) and always contains, at least the zero vector 0 = (0, . . . , 0). These observations
question Q2.
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Theorem 2.1.1. Let a be an m × n matrix. Suppose that x1 satisfies ax1 = y then every

other solution to this equation is of the form x1 + x0 where x0 ∈ ker(a). Moreover, every

vector of this form solves the equation ax = y.

The solution of the equation ax = y is unique only if the null space of a contains only the
0-vector or, in other words, the columns of a are linearly independent.

We now turn to question Q1. Suppose that a is an m× n-matrix, x is an n-vector and
y is an m-vector then ax is an m-vector and

〈ax,y〉 =
m

∑

i=1

n
∑

j=1

aijyixj.

The transpose of the matrix a is the n × m matrix at whose ij-entry is aji. From the
previous formula it follows that that

〈ax,y〉 = 〈x,aty〉.

Suppose that b is a non-zero vector in the null space of the transpose, atand the the
equation ax = y has a solution. Using the calculations above we see that

〈y,b〉 = 〈ax,b〉 = 〈x,atb〉 = 0.

The last equality follows from the fact that atb = 0. This gives a necessary condition for
existence of a solution to the equation ax = y. The vector y must satisfy the conditions

〈b,y〉 = 0,

for every solution of the homogeneous equation atb = 0. This also turns out to be sufficient.

Theorem 2.1.2. Let a be an m×n-matrix and y and m-vector. The equation ax = y has

a solution if and only if

〈b,y〉 = 0

for every vector b ∈ ker(at).

The equation atb = 0 has non-trivial solutions if and only if the rows of a are linearly
dependent. This means that the outcomes of the measurements {〈ai,x〉 : i = 1, . . . ,m}
are not independent of one another. The condition for the solvability of ax = y is simply
that entries of y should satisfy the same relations as the measurements themselves.

The corollary summarizes these results.

Corollary 2.1.1. Let a be an m × n-matrix the equation ax = y has a unique solution

for any vector y if and only if ker(a) = {0} and ker(at) = {0}. In particular, this implies

that m = n.

Example 2.1.1. Suppose we have a collection of photons sources, labeled by 1 ≤ i ≤ n and
an array of detectors, labeled by 1 ≤ j ≤ m. The matrix P has entries 0 ≤ pij ≤ 1. The
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ij-entry is the probability that a particle emitted from source i is detected by detector j.
Since a given photon can be detected by at most one detector it follows that

m
∑

j=1

pij ≤ 1 for i = 1, . . . n.

If dj , j = 1, . . . ,m is the number of photons detected at detector j and si, i = 1, . . . , n is
the number of photons emitted by source i then our model predicts that

Ps = d.

If m = n and P is an invertible matrix then we can use the measurements d to obtain a
unique vector s. Since the model is probabilistic this should be regarded as an expected value
for the distribution of sources. If m > n then we have more measurements than unknowns,
so any measurement errors or flaws in the model could make it impossible to find a vector
s so that Ps = d. This is a frequent situation in image reconstruction problems. One
chooses a way to measure the error, usually a function of the form e(Ps − d) and seeks a
vector s which minimizes the error. Finally we may have more sources than detectors. The
measurements are then inadequate, in principle to determine their distribution. This is also
a common circumstance in image reconstruction problems and is resolved by making some
a priori assumptions about the allowable distribution of sources to obtain a determined (or
even overdetermined) problem.

As illustrated by this example and explained in the theorem there are essentially 3 types
of linear models for systems with finitely many degrees of freedom.

Determined:

The simplest case arises when the number of independent measurements and pa-
rameters describing the state of the system are the same. This implies that n = m.
In this case the measurements uniquely determine the state of the system. Math-
ematically we say that the matrix, a is invertible. For a square matrix this is
equivalent to the statement that the homogeneous equation, ax = 0 has only the
trivial solution, x = 0. The inverse matrix is denoted by a−1, it is both a left and
a right inverse to a,

a−1a = Idn = aa−1.

Here Idn denotes the n × n identity matrix, that in

(Idn)ij =

{

1 if i = j,

0 if i 6= j.

From the mathematical point of view, the unique solution is obtained by setting

x = a−1y.

Except in special cases, the inverse matrix a−1 is not computed directly.
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Overdetermined:

In this case we have more measurements than parameters, i.e. m > n. If the
model and measurements are perfect then there should be a unique x with ax = y.
In general, neither is true and there will not exist any x exactly satisfying this
equation. Having more measurements than parameters can be used to advantage
in several different ways. In example 2.1.2 we explain how to use the conditions for
solvability given in Theorem 2.1.2 to determine physical parameters. Often times
measurements are noisy. A model for the noise in the measurements can be used
to select a criterion for a “best approximate solution.” The most common way to
measure the error is to use the norm defined in (1.7) setting

e(x) = ‖ax − y‖2.

There are two reasons why this measure of the error is often employed: 1. It is a
natural choice if the noise is normally distributed, 2. The problem of minimizing
e(x) can be reduced to the problem of solving a system of linear equations.

Underdetermined:

Most of the problems in image reconstruction are underdetermined, that is we do
not have enough data to uniquely determine a solution. In mathematical tomogra-
phy a “perfect reconstruction” requires an infinite number of exact measurements.
These are, of course never available. In a linear algebra problem, this is the case
where m < n. When the measurements y do not uniquely determine the state x,
additional criteria are needed to determine which solution to actually use. For
example one might use the solution to ax = y which is of smallest norm. Another
approach is to assume that x belongs to a subspace whose dimension is equal to
the number of independent measurements. Both of these approaches are used in
medical imaging.

Example 2.1.2. In the refraction problem considered in example 1.1.4 we remarked that the
refractive index of the lower fluid n2 could be determined by an additional measurement.
Suppose that we shine a beam of light in at a different angle, so that the upper angle is φ1

and the lower angle is φ2. This light beam is displaced by l2 as it passes through the fluid.
We now have 3 equations for the two unknowns:





1 1
tan(θ1) tan(θ2)
tan(φ1) tan(φ2)





(

h1

h2

)

=





h
l1
l2



 . (2.4)

In order for this equation to have a solution the measurements (h, l1, l2) must satisfy the
condition





1
tan(θ1)
tan(φ1)



×





1
tan(θ2)
tan(φ2)



 ·





h
l1
l2



 = 0.

Here × is the vector cross product. Since

sin(θ1)

sin(θ2)
=

sin(φ1)

sin(φ2)
=

n2

n1
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and the angles θ1 and φ1 as well as (h, l1, l2) are assumed known, this solvability conditions
gives a non-linear equation which allows the determination of n2

n1
from the measured data.

The problem of stability, Q3 is considered in the next section. This material is not
essential for the remainder of this chapter and can safely be skipped.

Exercises

Exercise 2.1.1. Let a be an m × n matrix. Show that if kera = kerat = 0 then n = m.
Is the converse true?

Exercise 2.1.2. Let a : R
n → R

n be an invertible linear transformation show that a−1 is
also linear.

Exercise 2.1.3. Suppose that the state of a system is described by the vector x. The
measurements are modeled as inner products {〈ai,x〉 : i = 1, . . . ,m}. However the mea-
surements are noisy and each is repeated mi times leading to measured values {y1

i , . . . , y
mi

j }.
Define an error function by

e(x) =
m

∑

i=1

mj
∑

k=1

(〈ai,x〉 − yk
i )2.

Show that e(x) is minimized by the vector which satisfies the averaged equations

〈ai,x〉 =
1

mi

mi
∑

k=1

yk
i .

2.1.2 Stability of solutions∗

Suppose that a is an n × n invertible matrix that models a measurement process. If x1

and x2 are two states of our system then, because the model is linear the difference in the
measurements can easily be computed

y1 − y2 = ax1 − ax2 = a(x1 − x2).

When studying stability it is very useful to have a measure for the “size” of a linear
transformation.

Definition 2.1.1. Let a be an m×n-matrix. The Euclidean operator norm of a is defined
to be

|||a||| = max ‖ax‖ : x ∈ R
n with ‖x‖ = 1.

This method for measuring the size of linear transformations has many useful properties.
Let a1 and a2 by m × n-matrices and c a real number, then

|||ca1||| = |c||||a1|||,
|||a1 + a2||| ≤ |||a1||| + |||a2|||,

‖a1x‖ ≤ |||a1|||‖x‖ for all x ∈ R
n.

(2.5)
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Using the operator norm we obtain the estimate

‖y1 − y2‖ ≤ |||a|||‖x1 − x2‖.

Therefore nearby states result in nearby measurements. However the reverse is often not
true. There may exist states x1 and x2 which are not nearby, in the sense that ‖x1 −x2‖ is
large but ‖a(x1−x2)‖ is small. Physically, the measurements performed are not sufficiently
independent to distinguish certain pairs of states, which are not, in fact very close together.
In numerical analysis this is known as an ill-conditioned equation. Briefly, a small error in
the measurement process can be magnified by applying a−1 to the measurement vector. For
an ill-conditioned problem even a good algorithm for solving linear equations can produce
meaningless results.

Example 2.1.3. For example, consider the system with m = n = 2 and

a =

(

1 0
1 10−5

)

.

Then x is given by a−1y where

a =

(

1 0
−105 105

)

.

If the actual data is y = (1, 1) but we make an error in measurement and measure, ym =
(1, 1 + ε) then the relative error is

|ym − y|
|y| = ε105.

Even though the measurements uniquely determine the state of the system, a small error
in measurement is vastly amplified.

The uncertainty in the model can be itself be modeled by using a + δa. for the mea-
surement matrix. Here δa represents an aggregation of the errors in the model. The
measurements are also subject to error and should be considered to have the form y + δy.
A more realistic problem is therefore to solve the system of equations

(a + δa)x = y + δy. (2.6)

But what does this mean?
We consider only the simplest case where a is an n×n, invertible matrix. Suppose that

we can bound the uncertainty in both the model and the measurements in the sense that
we have constants ε > 0 and η > 0 such that

‖δy‖ < ε and |||δa||| < η.

In the absence of more detailed information about the systematic errors, “the solution”
to (2.6) should be defined as the set of vectors

{x : | (a + δa)x = y + δy for some choice of δa, δy with ‖δy‖ < ε, |||δa||| < η}.
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This is a little cumbersome. In practice one finds a vector which satisfies

ax = y

and a bound for the error one makes in asserting that the actual state of the system is x.
To proceed with this analysis we assume that all the possible model matrices, a + δa

are invertible. If |||δa||| is sufficiently small then this condition is satisfied. As a is invertible
the number

µ = min
x6=0

‖ax‖
‖x‖ (2.7)

is a positive. If |||δa||| < µ then a+ δa is also invertible. The proof of this statement is given
in section A.2.7. In the remainder of this discussion we assume that η, the bound on the
uncertainty in the model is smaller than µ.

An estimate on the error in x is found in two steps. First, fix the model and consider
only errors in measurement. Suppose that ax = y and a(x + δx) = y + δy. Taking the
difference of these two equations gives

aδx = δy

and therefore δx = a−1δy. Using (2.5) we see that

‖δx‖ ≤ |||a−1|||‖δy‖.

This is a bound on the absolute error; it is more meaningful to bound the relative error
‖δx‖/‖x‖. To that end observe that

‖y‖ ≤ |||a|||‖x‖

and therefore
‖δx‖
‖x‖ ≤ |||a||||||a−1|||‖δy‖‖y‖ . (2.8)

This is a very useful estimate: it estimates the relative uncertainty in the state in terms of
the relative uncertainty in the measurements. The coefficient

ca = |||a||||||a−1||| (2.9)

is called the condition number of the matrix a. It is very useful measure of the stability of
a model of this type.

To complete our analysis we need to incorporate errors in the model. Suppose that
x + δx solves

(a + δa)(x + δx) = y + δy.

Subtracting this from ax = y gives

(a + δa)δx = δy − δax.

Proceeding as before we see that

‖δx‖
‖x‖ ≤ |||(a + δa)−1||||||a||| ‖δy‖‖y‖ + |||(a + δa)−1||||||δa|||. (2.10)
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If δa is very small (relative to µ) then

(a + δa)−1 = a−1 − a−1δaa−1 + O([δa]2).

The triangle inequality implies that

|||(a + δa)−1||| / |||a−1|||+ |||a−1δaa−1|||.

Ignoring quadratic error terms this gives the estimate

‖δx‖
‖x‖ ≤ ca

[‖δy‖
‖y‖ +

|||δa|||
|||a|||

]

. (2.11)

Once again, it is the condition number of a which relates the relative error in the predicted
state to the relative errors in the model and measurements.

This analysis considers a very special case, but it indicates how gross features of the
model constrain the accuracy of its predictions. We have discussed neither the effects of
using a particular algorithm to solve the system of equations or round-off error, a similar
analysis applies to study these problems. A very good reference for this material is [78].
In image reconstruction the practical problems of solving systems of linear equations are
considerable. It is not uncommon to have 10, 000-equations in 10, 000-unknowns. These
huge systems arise as finite dimensional approximations to linear equations for functions of
continuous variables. We close this section with a short discussion of linear algebra in in
infinite dimensional spaces. This is a theme which occupies a large part of this book.

Exercises

Exercise 2.1.4. Show that µ, defined in (2.7) equals |||a−1|||.
Exercise 2.1.5. Show that the condition number is given by the following ratio

ca =
maxx6=0

‖ax‖
‖x‖

minx6=0
‖ax‖
‖x‖

. (2.12)

This shows that the condition number of any matrix is at least 1.

2.2 Infinite dimensional linear algebra

The state of a ‘system’ in medical imaging is described by a function of continuous variables.
In this introductory section we consider real valued functions defined on the real line. Let
f(x) describe the state of the system. A linear measurement of the state is usually described
as an integral

M(f)(x) =

∞
∫

−∞

m(x, y)f(y)dy.

Here m(x, y) is a function on R × R which provides a model for the measurement process.
It can be thought of as an infinite ‘matrix’ with indices x and y. A linear transformation
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of an infinite dimensional space is called a linear operator. A linear transformation which
can be expressed as an integral is called an integral operator.

Suppose that the function g(x) is the output of the measurement process, to reconstruct
f means solving the linear equation

Mf = g.

This is a concise way to write a system of infinitely many equations in infinitely many
unknowns. Theorems 2.1.1 and 2.1.2 contain the complete theory for the existence and
uniqueness of solutions to linear equations in finitely many variables. These theorems
are entirely algebraic in character. No such theory exists for equations in infinitely many
variables. It is usually a very complicated problem to describe both the domain and range
of such a transformation. We close this section with a few illustrative examples.

Example 2.2.1. Perhaps the simplest linear operator is the indefinite integral

I(f)(x) =

x
∫

0

f(y)dy.

If we use the continuous functions on R as the domain of I then every function in the range
is continuously differentiable. Moreover the null-space of I is the zero function. Observe
that the domain and range of I are fundamentally different spaces. Because I(f)(0) = 0
not every continuously differentiable function is in the range of I. The derivative is a left
inverse to I as the Fundamental Theorem of Calculus states that if f is continuous then

d

dx
◦ I(f)(x) = f(x).

On the other hand it is not quite a right inverse because

I(
df

dx
)(x) = f(x) − f(0).

The domain of I can be enlarged to include all locally integrable functions. These are
functions such that

x
∫

0

|f(y)|dy < ∞

for every x ∈ R. Enlarging the domain also enlarges the range. For example the function
|x| lies in the enlarged range of I,

|x| =

x
∫

0

sign(y)dy,

where sign(y) = 1 if y ≥ 0 and −1 if y < 0. Even though |x| is not differentiable at x = 0
it is still the indefinite integral of a locally integrable function, however the formula

d|x|
dx

= sign(x)

does not make sense at x = 0.
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Example 2.2.2. Changing the lower limit of integration to −∞ leads to a very different sort
of linear transformation. Initially I∞ is defined for continuous functions f, vanishing for
sufficiently negative x by

I∞(f)(x) =

x
∫

−∞

f(y)dy.

Once again the null-space of I∞ consists of the zero function alone. The domain can be
enlarged to include locally integrable functions such that

lim
R→∞

0
∫

−R

|f(y)|dy < ∞. (2.13)

If f is continuous then we can apply the F.T.C. to obtain

d

dx
◦ I(f) = f.

If a function g belongs to the range of I then

lim
x→−∞

g(x) = 0. (2.14)

There are once differentiable functions satisfying this condition which do not belong to the
range of I∞. For example,

f(x) =
x cos x − sinx

x2
=

d

dx

sinx

x

satisfies (2.14) but cos x
x

does not satisfy (2.13). With the domain defined by (2.13) the
precise range of I∞ is rather difficult to describe.

This example illustrates how a integral operator may have a simple definition on a
certain domain, which by a limiting process can be extended to a larger domain. The
domain of such an operator is often characterized by a size condition like (2.13).

Example 2.2.3. A real physical measurement is always some sort of an average. If the state
of the system is described by a function f of a single variable x then the average of f over
an interval of length 2δ is

Mδ(f)(x) =
1

2δ

x+δ
∫

x−δ

f(y)dy.

A natural domain for Mδ is all locally integrable functions. To what extent is f determined
by Mδ(f)? Suppose that f and g are two states, then, because the integral is linear

Mδ(f) −Mδ(g) = Mδ(f − g).

The extent to which Mδ(f) determines f is characterized by the null-space of Mδ,

Nδ = {f : Mδ(f) = 0}.
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Proceeding formally, we can differentiate Mδ(f) to obtain

dMδ(f)

dx
= f(x + δ) − f(x − δ) (2.15)

If f ∈ Nδ then Mδ(f) is surely constant and therefore

f ∈ Nδ ⇒ f(x + δ) − f(x − δ) = 0,

in other words f is periodic with periodic 2δ. A periodic function has an expansion in terms
of sines and cosines, that is

f(x) = a0 +

∞
∑

j=1

[

aj cos(
πjx

δ
) + bj sin(

πjx

δ
)

]

.

If a0 = 0 then Mδ(f) = 0. This shows that the null-space of Mδ is infinite dimensional.
In applications one often has additional information about the state of the system, for

example one might know that
lim

|x|→∞
f(x) = 0. (2.16)

A periodic function that tends to zero at infinity must be identically zero, so among such
functions the measurements Mδ(f) would appear to determine f completely. To prove this
statement we need to know somewhat more about f than (2.16). With a more quantitative
condition like

‖f‖p =





∞
∫

−∞

|f(y)|pdy





1

p

< ∞, (2.17)

for a p between 1 and 2, it is possible to show that Mδ(f) = 0 implies that f = 0. For
such functions the measurement Mδ(f) uniquely determines f. However, f cannot be stably

reconstructed from Mδ(f). A small error in measurement can lead to a very large error in
the reconstructed state.

The integral in (2.17) defines a measure for the size of f called the Lp-norm. It is a
generalization of the notion of a norm on a finite dimensional vector space and satisfies the
familiar conditions for a norm:

‖af‖p = |a|‖f‖p and ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

The first step in analyzing linear transformations of infinite dimensional spaces is the in-
troduction of norms on the domain and range. This was not necessary in finite dimensions
but is absolutely essential in the infinite dimensional case. In medical image reconstruction
there is a small list of linear transformations that are very important, the Fourier transform,
Radon transform and Abel transform. A large part of this text is devoted to the analysis
of these operators.

Exercises

Exercise 2.2.1. Prove that the null-space of I acting on C0(R) is the zero function.
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2.3 Conclusion

The text by Peter D. Lax, [43] provides an execellent introduction to the theoretical aspects
of linear algebra while Trefethen and Bau, [78] covers the numerical side of the subject.


