
Lecture 6 - F-structures I, Definitions

August 1, 2011

This lecture’s reference is Cheeger-Gromov’s 1986 JDG paper ”Collapsing Riemannian
manifold while keeping their curvature bounded. I.”

1 Definitions

Def A partial action, A, of a topological group G on a Hausdorff space X is given by

i. The domain of the action: a neighborhood D ⊂ G×X of {e} ×X.

ii. A continuous map A : D → X, also written (g, x)→ gx, such that (g1g2)x = g1(g2x)
whenever (g1g2, x) and (g1, g2x) lie in D.

To emphasize the domain, a partial action A can be written (A,D). An equivalence relation
exists on the set of partial actions; an equivalence class is called a local action. Two partial
actions (A1,D1) and (A2,D2) of a topological group G on a Hausdorff space X are equivalent
if for any open subset D ⊂ D1 ∩D2 with {e} × X ⊂ D1 ∩D2, we have A1|D = A2|D; an
equivalence class is denote by [A]. We list some additional facts and definitions.

• Any global action defines a local action; an equivalence class which has such a member
will be called complete. Notice that if G is connected, any two global actions in the
same equivalence class are identical.

• In the smooth category, the local actions of a Lie group G is in 1-1 correspondence
with the homomorphisms from the Lie algebra of G to the Lie algebra of vector fields
on X. The completeness of an action is the same as the global integrability of the
individual vector fields.

• If [A] is a local action, a subset X0 ⊂ X is called [A]-invariant if whenever x0 ∈ X0

and (g, x0) ∈ D then gx0 ∈ X0. The intersection of [A]-invariant sets is [A]-invariant,
so any point x lies in a minimal [A]-invariant set, called the orbit of x, denoted Ox or
just O.
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• The orbits of X form a partition.

• Unlike an action, a local action [A] on X pulls back along any local homeomorphism
f : Y → X to a local action f∗[A] on Y .

• A local action [A] on X can be restricted to any subset U ⊂ X by restricting the
domain D of any representative of [A] to any open subset D′ that contains {e} × U
and which obeys (ii) from above.

• If (A1,D1) represents a local action on U1 and (A2,D2) represents a local action on
U2 and if A1|U1∩U2

= A2|U1∩U2
, a local action on U ∪ V can be taken to be the

equivalence class of the partial action (A1|U1∩U2
,D1 ∩D2). This equivalence class is

uniquely defined.

The last two points suggest compatibility with another topological construction that is
perhaps more familiar.

Def A sheaf F on a topological space X is an association between open sets U ⊂ X
and groups that satisfies the following three axioms.

a) F(U) is a group whenever U is an open subset and F(∅) = {0}, of X

b) If V ⊆ U is an inclusion of open sets, there is a homomorphism (the restriction, or
structure homomorphism) ρV U : F(U) → F(V ) subject to the restrictions (i) that
ρUU = Id and (ii) that W ⊆ V ⊆ U implies ρWU = ρWV ◦ ρV U .

c) If {Uα} is an open covering of U and sα ∈ F(Vα) satisfies sα|Uα∩Uβ
= sβ |Uα∩Uβ

, then
there exists a unique element s ∈ FU so that s|Uα = sα.

If F only satisfies (a) and (b) it is called a presheaf. A salient feature of sheafs is the existence
of a stalk over each point. Let F be a sheaf over M , and let p ∈ M . Let {Uα}α∈A be the
family of open sets containing p. Then the F(Uα) along with the structure homomorphisms
constitute a directed family of groups, the direct limit of which is called the stalk at p. A
topology can be put on the space of stalk: a neighborhood base is given by the images of
the “sections” F(U) in the space of stalks. Stalks can be defined if just a presheaf structure
exists, and then sections of the space of stalks constitute a sheaf (the sheafification of the
presheaf).

Let g be a sheaf of connected topological groups (note there is some question about
topology here; we just accept that there are two topologies, the sheaf topology, and a
topology that makes the stalks into Lie groups— we usually ignore the sheaf topology). An
action of g on X is given by a local action of g(U) for each open U such that the local actions
agree with the sheaf restriction maps. To be explicit, when x ∈ V ⊂ U and g ∈ g(U), we
have gx = ρV U (g)x wherever ρV U (g)x is defined.

A set S ⊂ X is called invariant if S ∩ U is invariant under g(U) for all open subsets
U ⊂ X. A minimal invariant set is called an orbit. The orbits partition X, and a set that
is the disjoint union of orbits is called saturated.
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We use gx to denote the stalk of g at x ∈ X. If f : X → Y is a local homeomorphism
then we denote by f∗ g the pullback sheaf.

Def An action of a sheaf g is called a complete local action if

i. Whenever x ∈ X there exists a neighborhood V (x) of x and a local homeomorphism

π : Ṽ (x)→ V (x) so that Ṽ (x) is Hausdorff

ii. If x̃ ∈ π−1(x) and g̃ denotes the pullback of g along π, then for any open set W̃ ⊂ Ṽ (x)

with x̃ ∈ W̃ , the structure homomorphism g̃(W̃ )→ gx̃ is an isomorphism

iii. The local action of g̃(Ṽ (x)) on Ṽ (x) is complete.

If π : Ṽ (x)→ V (x) is a covering space, the deck transformation group Γ induces a natural
action on π∗ g, called the holonomy action. Specifically, if g ∈ g(U) then γ(g) acts on
elements x ∈ γ(U) via γ(g) = γ ◦ g ◦ γ−1. One verifies that for γ ∈ Γ, we have γ(gx) =
γ(g)γ(x).

Def A g̃-structure G on X is a sheaf, g, of connected topological groups and a complete
local action of g on X such that the sets V (x) and Ṽ (x) can be chosen so that

i. π : Ṽ (x)→ V (x) is a normal covering map

ii. For all x, V (x) is saturated

iii. For all O, if x, y ∈ O, then V (x) = V (y).

Condition (iii) implies that g is a locally constant sheaf on O, though not necessarily on
neighborhoods of O.

Def A g̃-structure G is called an F-structure if each stalk gx is isomorphic to a torus,
and the local covers Ṽ (x) → V (x) can be chosen to be finite normal covers. If in addition

one can choose Ṽ (x) = V (x), then G is called a T-structure.

2 Exercises

1) Consider the action of the Lie group G = (R,+) on itself; this determines a complete
local action [AR]. Let X = (a, b) ⊂ R. It was claimed that the local action [AR] on R
restricts to a local action [AX ] on X. Give an example of a partial action A ∈ [AX ]
by specifying the domain and the action.

2) In the context of the previous example, let X = (0, 2) and Y = (1, 3), and let (AX ,DX)
and (AY ,DY ) be partial actions on X and Y , respectively. To make this example
explicit, write down explicit choices for the domains DX and DY . Given these choices,
describe the consequent partial action on Z = (0, 3) with DZ = DX ∩DY .
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3) Let f : X̃ → X be a local homeomorphism between the Hausdorff spaces X̃ and X.
Prove that any local action on X lifts to a partial action on X.

4) There is an obvious partial action of S1 on itself, which is also an action. Since R1 → S1
is a covering map and therefore a local homeomorphism, there is a local action of S1
on R. Give a description of some partial action in this local action.

5) The local action of S1 on R described in the previous exercise can easily be made into
the local action of a sheaf of groups over R, with stalk S1 at each point (a constant
sheaf). Prove that this local action is not a complete local action.

4


	Definitions
	Exercises

