Lecture 14 - Isomorphism Theorem of Harish-Chandra

March 11, 2013

This lectures shall be focused on central characters and what they can tell us about the universal enveloping algebra of a semisimple Lie algebra.

1 Invariant Polynomials

In our discussion last time of formal characters, we showed that the formal character of a representation is \mathcal{W} -invariant, and further that any \mathcal{W} -invariant character was a sum of characters of representations. The same statement holds true for central characters. Obviously we must first determine how a central character is obtained from a representation. This leads us to the study of invariant polynomials.

A polynomial on $\mathfrak g$ is an element of $S(\mathfrak g^*)$. Given a monomial $P=g_{i_1}^*\ldots g_{i_k}^*$, it acts with homogeneity k on $\mathfrak g$ by $(g_{i_1}^*\ldots g_{i_k}^*)(X)=g_{i_1}^*(X)\ldots g_{i_k}^*(X)$. If $P\in S(\mathfrak g^*)$ is a homogeneous polynomial (of order k, say), we can *polarize* (symmetrize) it to obtain a function of k variables. If $P=g_1^*\ldots g_k^*$, it acts on $\bigotimes^k \mathfrak g$ by

$$P(X_1, \dots, X_k) = \frac{1}{k!} \sum_{\pi \in S_k} g_1^*(X_{\pi 1}) \dots g_k^*(X_{\pi k})$$
 (1)

for $X_1, \ldots, X_n \in \mathfrak{g}$. Note that $P(X) = P(X, \ldots, X)$. Notice that many non-trivial k-homogeneous polynomials P have homegeity k action being precisely zero: P(X) = 0 for all X, although $P \neq 0$. Nevertheless, polynomials with non-zero homogeneity-k actions play a distinguished role in or study.

Given any homogeneity-k polynomial $P \in S(\mathfrak{g}^*)$ and $g \in \mathfrak{g}$, we have the contragredient action of g on P, given by

$$(g.P)(X_1, \dots, X_k) = -\sum_i P(X_1, \dots, [g, X_i], \dots, X_k)$$
 (2)

A polynomial P for which g.P = 0, all $g \in \mathfrak{g}$ is called *invariant*. The algebra of invariant polynomials is denoted $S(\mathfrak{g}^*)^{\mathfrak{g}}$.

Let $\tau: \mathfrak{g} \to V$ be a finite-dimensional representation, and consider the homogeneity k map

$$P_{\tau,k}(X) = tr(\tau(X))^k. \tag{3}$$

Polarizing, we obtain

$$P_{\tau,k}(X_1, \dots, X_k) = \frac{1}{k!} \sum_{\pi \in S_k} tr(\tau(X_{\pi 1}) \dots \tau(X_{\pi k}))$$
 (4)

for $X_1, \ldots, X_k \in \mathfrak{g}$. Breaking apart this sum, consider a single monomial F, where say

$$F(X_1, \dots, X_k) = tr(\tau(X_1) \dots \tau(X_k)). \tag{5}$$

With $\tau([g,X]) = \tau(g)\tau(X) - \tau(X)\tau(g)$ we obtain

$$\sum_{i} F(X_{1}, \dots, [g, X_{i}], X_{k})$$

$$= \sum_{i} tr(\tau(X_{1}) \dots \tau(g)\tau(X_{i})\tau(X_{k})) - \sum_{i} tr(\tau(X_{1}) \dots \tau(X_{i})\tau(g)\tau(X_{k}))$$

$$= tr(\tau(g)\tau(X_{1}) \dots \tau(X_{k})) - tr(\tau(X_{1}) \dots \tau(X_{k})\tau(g)).$$
(6)

which equals zero by the cyclic property of traces. Thus polynomials of the form $P_{\tau,k}$ are invariant.

Now an invariant polynomial on \mathfrak{g} restricts to \mathfrak{h} , where in fact it is \mathcal{W} -invariant; the algebra of \mathcal{W} -invariant polynomials on \mathfrak{h} is denoted $S(\mathfrak{h}^*)^{\mathcal{W}}$. To see this, simply note that P_{τ} is invariant under $\sigma_{\alpha} = e^{ad_x}e^{-ad_y}e^{ad_x}$ where $span_{\mathbb{C}}\{x,y,h\}$ is the \mathfrak{sl}_2 -subspace of \mathfrak{g} corresponding to the root α . We have already see that the contragredient action of σ_{α} on \mathfrak{h}^* is the Weyl reflection in α . Thus we have a restriction map

$$\rho: S(\mathfrak{g}^*)^{\mathfrak{g}} \to S(\mathfrak{h}^*)^{\mathcal{W}}. \tag{7}$$

Proposition 1.1 The restriction map ρ is an isomorphism. Indeed $S(\mathfrak{h}^*)^{\mathcal{W}}$ is spanned by polynomials of the form $P_{\tau,k}$ as τ ranges over all finite dimensional irreducible representations and k over all non-negative integers.

Pf. If λ is a weight, note that $\lambda^k \in S(\mathfrak{h}^*)$. We can average λ^k over the action of \mathcal{W} to obtain $A\lambda^k \in S(\mathfrak{h}^*)^{\mathcal{W}}$. Further, we can assume λ is dominant. Let M_{λ} be the set of dominant weights λ' so that $\lambda' < \lambda$. Now if τ has highest weight λ , then $P_{\tau,k}$ is a polynomial in terms of $A\lambda^k$ and lower weights. In fact $P_{\tau,k} - A\lambda_k$ is a combination of the $A(\lambda')^k$ for $\lambda' \in M_{\lambda}$. Now an induction argument can proceed.

We make a final note before moving on. The killing form κ produces an isomorphism $\mathfrak{g}^* \to \mathfrak{g}$, which extends to $S(\mathfrak{g}^*) \to S(\mathfrak{g})$. Due to the associativity of κ , we have in fact $\kappa : S(\mathfrak{g}^*)^{\mathcal{W}} \to S(\mathfrak{g})^{\mathcal{W}}$

Now we have a vector-space isomorphism

$$\mathfrak{B}: S(\mathfrak{g}) \to U(\mathfrak{g})$$
 (8)

which, among other possibilities, can be given by

$$X_1 \odot \cdots \odot X_k \mapsto \frac{1}{k!} \sum_{\pi \in S_k} X_{\pi 1} \dots X_{\pi k}$$
 (9)

Now if $P \in S(\mathfrak{g})^{\mathfrak{g}}$, then in fact $\mathfrak{B}(P)$ is central. This is clear from the commutator relation

$$\mathfrak{B}([g, X_1 \odot \cdots \odot X_k]) = [g, \mathfrak{B}(X_1 \odot \cdots \odot X_k)] \tag{10}$$

and that the left side equals zero. Lastly, if a monomial $X_1 \dots X_k \in U(\mathfrak{g})$ is central, it is \mathfrak{g} -invariant, meaning

$$0 = [g, X_1 ... X_k]$$

$$= [g, X_1] X_2 ... X_k + ... + X_1 ... X_{k-1} [g, X_k]$$

$$= \mathfrak{B}([g, X_1], X_2, ..., X_k) + ... + \mathfrak{B}(X_1, ..., X_{k-1} [g, X_k]) \bmod S^{k-1}(\mathfrak{g})$$
(11)

Similarly for a sum of monomials in $U(\mathfrak{g})$. The lower-order terms are W-invariant as well, so we see that

$$\mathfrak{B}: S(\mathfrak{g})^{\mathfrak{g}} \to U(\mathfrak{g})^{\mathfrak{g}} \approx \mathfrak{Z} \tag{12}$$

is a vector space isomorphism.

2 The Harish-Chandra map

2.1 Evaluation of characters

Given a central character χ , how do we determine its value at a point $\lambda \in \mathcal{L}$? As usual, set

$$\mathfrak{n}^{+} = \bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}$$

$$\mathfrak{n}^{-} = \bigoplus_{\alpha \in \Phi^{-}} \mathfrak{g}_{\alpha}$$
(13)

Consider the decomposition of the enveloping algebra

$$U\mathfrak{g} = U\mathfrak{h} \oplus (U(\mathfrak{g})\mathfrak{n}^+ + \mathfrak{n}^- U(\mathfrak{g})) \tag{14}$$

which we know is possible due to Poincare-Birkhoff-Witt. Notice that $U(\mathfrak{g})\mathfrak{n}^+$ and $\mathfrak{n}^-U(\mathfrak{g})$ are not disjoint. Now if $z \in \mathfrak{Z}$ is central, then in fact

$$z \in U\mathfrak{h} \oplus \left(U(\mathfrak{g})\mathfrak{n}^+ \cap \mathfrak{n}^- U(\mathfrak{g}) \right). \tag{15}$$

Define the map γ to be the projection onto the first factor. Note that \mathfrak{h} is commutative, so $U(\mathfrak{h}) = S(\mathfrak{h})$. One easily sees γ is an algebra homomorphism. We therefore have the algebra homomorphism

$$\gamma: \mathfrak{Z} \to S(\mathfrak{h}). \tag{16}$$

How exactly does this help? Consider the irreducible highest-weight module V^{Λ} of highest weight Λ , and suppose v^+ is a highest-weight module. Since \mathfrak{n}^+ kills v^+ , we have

$$z.v^{+} = \gamma(z).v^{+} = \Lambda(\gamma(z))v^{+} \tag{17}$$

where the weight Λ acts on the polynomial $\gamma(z)$ in the obvious way. Considering $S(\mathfrak{h})$ to be the polynomial algebra on \mathfrak{h}^* , we can write $\Lambda(\gamma(z)) = \gamma(z)(\Lambda)$, which is probably more natural.

We have shown that

$$\chi_{\Lambda}(z) = \gamma(z)(\Lambda). \tag{18}$$

2.2 Twisted Chracters

This is all very nice, but, as it happens, unsymmetrical. Consider the twisted character $\tilde{\chi}_{\Lambda}$ defined by

$$\tilde{\chi}_{\Lambda} = \chi_{\Lambda - \delta} \tag{19}$$

where δ is the Weyl vector.

Consider also the twist map $\tau: S(\mathfrak{h}) \to S(\mathfrak{h})$ given on $\mathfrak{h} \subset U(\mathfrak{h})$ by $\tau(h) = h - \delta(h)1$. Define the Harish-Chandra map $\tilde{\gamma}: \mathfrak{Z} \to S(\mathfrak{h})$ by

$$\tilde{\gamma} = \tau \circ \gamma. \tag{20}$$

Then we have $\tilde{\chi}_{\Lambda}(z) = \tilde{\gamma}(z)(\Lambda)$.

$$\tilde{\chi}_{\Lambda}(z) = \chi_{\Lambda - \delta}(z)
= \gamma(z)(\Lambda - \delta)
= \tau \circ \gamma(z)(\Lambda)
= \tilde{\gamma}(z)(\Lambda)$$
(21)

Proposition 2.1 The twisted character is Weyl-invariant: $\tilde{\chi}_{\sigma\Lambda} = \tilde{\chi}_{\Lambda}$ for any $\sigma \in \mathcal{W}$.

Pf. Consider the Verma module $\mathcal{V}^{\Lambda-\delta}$. Recall that this is an infinite dimensional module with a maximal submodule so that the quotient is the irreducible module of highest weight $\Lambda - \delta$. Let v^+ be a highest weight vector, so that

$$\tilde{\gamma}(z)(\Lambda)v^{+} = \tilde{\chi}_{\Lambda}(z)v^{+} = \chi_{\Lambda-\delta}(z)v^{+} = \lambda(z).v^{+} \tag{22}$$

Now consider the \mathfrak{sl}_2 subalgebra $\{x,y,h\}$ corresponding to the simple root α_i , and let r be the Dynkin coefficient $r=\langle \alpha_i,\Lambda\rangle$. Note that the i^{th} Dynkin coefficient of $\Lambda-\delta$ is r-1. Therefore

$$x.y^r.v^+ = 0 (23)$$

and because $[x_j,y]=0$ for any other x_j in the root-space \mathfrak{g}_{α_j} (simple root α_j), we have that $x_j.y^r.v^+=y^r.x_j.v^+=0$. Thus v^+ is killed by \mathfrak{n}^+ . This means that

$$z.y^r.v^+ = \gamma(z).y^r.v^+ = \gamma(z)(\Lambda - r_i\alpha - \delta)y^r.z = \tilde{\gamma}(z)(\sigma_i\Lambda)y^r.z \tag{24}$$

where σ_i is the Weyl reflection in α_i . But

$$z.y^r.v^+ = y^r.z.v^+ = y^r.\gamma(z).v^+ = \tilde{\gamma}(z)(\Lambda)v^+$$
 (25)

Therefore $\tilde{\gamma}(z)(\sigma_i\Lambda) = \tilde{\gamma}(z)\Lambda$, which means

$$\tilde{\chi}_{\Lambda} = \tilde{\chi}_{\sigma_i \Lambda}. \tag{26}$$

Corollary 2.2 The Harish-Chandra map $\tilde{\gamma}$ is a homomorphism $\tilde{\gamma}: \mathfrak{Z} \to S(\mathfrak{h})^{\mathcal{W}}$.

3 The Harish-Chandra Isomorphism

To see the bijectivity of $\tilde{\gamma}$, first recall that we have the following vector space isomorphisms

$$S(\mathfrak{h})^{\mathcal{W}} \approx U(\mathfrak{h})^{\mathcal{W}}$$

 $S(\mathfrak{g})^{\mathfrak{g}} \approx U(\mathfrak{g})^{\mathfrak{g}}$ (27)

and vector space maps

$$S(\mathfrak{h})^{\mathcal{W}} \hookrightarrow S(\mathfrak{g})^{\mathfrak{g}} \approx \mathfrak{Z} \xrightarrow{\gamma} U(\mathfrak{h}).$$
 (28)

The un-twisted map $\gamma: \mathfrak{Z} \to U(\mathfrak{h})$ is a projection, and while not an algebra homomorphism, it has no kernel on elements of $U(\mathfrak{h})^{\mathcal{W}}$. Since τ is a vector space isomorphism and $\tilde{\gamma} = \sigma \circ \gamma$ is an algebra homomorphism on $U(\mathfrak{h})^{\mathcal{W}}$, we get a composition of vector space isomorphisms

$$S(\mathfrak{h})^{\mathcal{W}} \hookrightarrow S(\mathfrak{g})^{\mathfrak{g}} \approx \mathfrak{Z} \xrightarrow{\tilde{\gamma}} U(\mathfrak{h})^{\mathcal{W}}.$$
 (29)

so that

$$U(\mathfrak{g})^{\mathfrak{g}} \approx \mathfrak{Z} \xrightarrow{\tilde{\gamma}} U(\mathfrak{h})^{\mathcal{W}}.$$
 (30)

is an algebra isomorphism.