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parabolic if P includes some Borel subalgebra. (In that case P is self-
normalizing, by Lemma 15.2B.) Fix a base A < @, and set B = B(A).
For each subset A’ < A, define P(A’) to be the subalgebra of L generated
byall L, {xeA or —axeA’), along with H.

(a) P(A") is a parabolic subalgebra of L (called standard relative to A),

(b) Each parabolic subalgebra of L including B(A) has the form P(A") 7

for some A’ < A, [Use the Corollary of Lemma [0.2A and Proposition
8.4(d).] -
(c) Prove that every parabolic subalgebra of L is conjugate under &(L)
to one of the P(A').

7. Let L = sl(2, F), with standard basis (x, 4, ¥). For ceF, write x(c} ==
exp ad(ecx), p(c) = exp ad(cy). Define inner automorphisms wic) =
2 — ¢ ™ Nxle), Ae) = wlcm(1) ™ (=w(cw(—1)), for ¢ # Q. Compute
the matrices of w(c), i(c) relative to the given basis of L, and deduce that
a]l diagonal automorphisms (16.5) of L are inner. Conclude in this case
that Aut L = Int L = £(L).

8. Let L be semisimple. Prove that the intersection of two Borel subalge-
bras B, B’ of L always includes a CSA of L. [The proof is not easy;
here is one possible outline:

(a) Let NN’ be the respective ideals of nilpotent elements in B, 8.
Relative to the Killing form of L, N=B+,N'=8'1, where .. denotes
orthogonal complement. '

(b) Therefore B=N*=(N+(NnNH' =(N+(BnNND'=N1n
(BL4+Ny=Bn(N+B)=N+(Bn B".

(c) Note that 4 = B~ B’ contains the semisimple and nilpotent parts of
its elements.

(d) Let T be a maximal toral subalgebra of A4, and find a T-stable
complement 4" to AN N. Then A" consists of semisimple elements.
Since B/ N is abelian, [TA'}=0, forcing A" =T.

{e) Combine (b), (d) to obtain B=N+T; thus T is a maximal toral
subalgebra of 1.]

Notes

The proof of Theorem 16.4 is due to Winter [1] (inspired in part by G.
D. Mostow); see also Barnes [1]. Most of the older proofs use analytic
methods (F=C) or else some algebraic geometry: see Bourbaki [3], Chap.
VII, Chevalley [2], Jacobson [1}, Séminaire “Sophus Lie” [1], Serre [2]. For
detailed accounts of the automorphism groups, consult Jacobson [1],
Seligman [I].

Chapter V

Existence Theorem

17. Universal enveloping algebras

In this section F may be an arbitrary field {except where otherwise noted).
We shall associate to each Lie algebra £. over F an associative algebra with 1
(infinite dimensional, in general), which is generated as “freely” as possible
by L subject to the commutation relations in L. This "universal enveloping
algebra” is a basic tool in representation theory. Although it could have
been introduced right away in Chapter I, we deferred it until now in order
to avoid the unpleasant task of proving the Poincaré-Birkhoff-Witt Theorem
before it was really needed. The reader is advised to forget temporarily all
the specialized theory of semisimple Lie algebras.

17.1. Tensor and symmetric algebras

First we introduce a couple of algebras defined by universal properties.
(For further details consult, e.g., S. Lang, Algebra, Reading, Mass.:
Addison-Wesley 1965, Ch., XVI1.) Fix a finite dimensional vector space
Vover ELet TV =F, I'W=V,TVF=¥VaV,...T"V=V®...®

o
¥ (s copies). Define T(V) = [| 7'V, and introduce an associative product,
i=0
defined on homogencous generators of T(¥) by the obvious rule (o; ® . ..
®@v) W ®...0w,) =0, ®.. 0, @w; @...0 w,eT*™V. This
makes T(F) an associative graded algebra with. I, which is generated by 1
along with any basis of ¥. We call it the tensor algebra on V. (V) is the
universal associative algebra on # generators (n = dim V), in the following
sense: given any F-linear map &: ¥ — 9 (YU an associative algebra with
1 over F), there exists a unique homomorphism of F-algebras : I(V) - A
such that #(1) =-1 and the following diagram commutes (i = inclusion):

— an
I ]
A

Next let I be the (two sided) ideal in (V) generated by all x @ y—y @ x
(x, y & V) and call &(¥) = T (¥)/f the symmetric algebra on V; o: T(V) —
&(V) will denote the canonical map. Notice that the generators of [ lie in
T2V; this makes it obvious that = (N T*NOUNT*NG... .
Therefore, & is injective on T°V = F, T'¥ = ¥ (allowing us to identify ¥
with a subspace of &(F)), and S(¥) inherits a grading from T(V}: &(V)
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= || §'¥. The effect of factoring out I is just to make the elements of ¥

fe
commute; so &(¥) is universal (in the above sense) for linear maps of V
into commutative associative F-algebras with 1. Moreover, if (x, ..., x,)

is any fixed basis of ¥, then &(F) is canonically isomorphic to the poly-
nomial algebra over F in n variables, with basis consisting of I and all
Xy X t2 L IS Hl) 2.0 2 H) 20

The reader can easily verify that the preceding constructions go through
even when V is infinite dimensional.

For use much later {in §23) we mention a special fact in case char F = 0.
The symmetric group %, acts on TV by permuting subscripts of tensors
6 @ ... ® ty (0,6 V). An element of TV fixed by &, is called a homo-
gencous symmetric tensor of order m. Example: x & y+y & x (order 2).
Fix a basis {x;, - - ., x,) of ¥, so the products x;,, @ ... @ Xjemy {1 s (j}
< ») form a basis of 7™V, For each ordered sequence 1 < (1} < i(2). ..
< #m) < n, define a symmetric tensor -

1

*) oo ﬂ; Xitag1y) @ + + « & Xipupmy)

(which makes sense since m! # 0 in F), The images of these tensors in S™V
are nonzero and clearly form a basis there, so the tensors (*) in furn must
span a complement to I N TV in T™V. On the other hand, the tensors (*)
obvicusly span the space of all symmetric tensors of order m (call it Smy <
T™V). We conclude that o defines a vector space isomorphism of 5™V onto
S™V, hence of the space &(¥) of all symmetric tensors onte S(¥).

17.2. Construction of U({L)

We begin with the abstract definition, for an arbitrary Lie algebra L
{allowed here to be infinite dimensional, contrary to our usual convention).
A universal enveloping algebra of L is a pair (U, /), where Ll is an associative
algebra with 1 over F, i: L — U is a linear map satisfying

™ i[xy]) = 1)) —i()ix)

for x, y e L, and the following holds: for any associative F-algebra 2 with 1
and any linear map j: L — W satisfying (*), there exists a unique homo-
morphism of algebras ¢: U — U (sending 1 to 1} such that e i = j

The wnigueness of such a pair (1, #) is easy to prove. Given another pair
(B, i") satisfying the same hypotheses, we get homomorphisms ¢: U — B,
¢ B —» 1. By definition, there is a unique dotted map making the following
diagram commuie:

u

L
\31
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But 1, and (o ¢ both do the trick, so $o¢ = 1y Similarly, ¢ = 1g.

Existence of a suitable pair (1, i} is also not difficult to establish, Let
T(L) be the tensor algebra on L (17.1), and Jet J be the two sided ideal in
F(L) penerated by all x @ p—y @ x—~[x](x, y e L). Define U(LY = T{L)}J,
and let = T(L) - (L) be the canonical homomorphism. Notice that
J <[] T'L, so = maps T°L = F isomorphically into W(L) (therefore, (L)
cont:irnls at least the scalars). It is not at all obvious that » maps T'L =L
isomerphically into U(L); this will be proved later, In any case, we claim that
(U(L), ) is a universal enveloping algebra of L, where i L — N(L) is the
restriction of = to L. Indeed, let j: L -> % be as in the definition. The uni-
versal property of T(L) yields an algebra homomorphism ¢ T(L) - A
which extends 7 and sends 1 to 1. The special property (¥} of j forces all
x®y—y @ x—[xy] to lie in Ker ¢, so ¢ induces a homomorphism ¢:
(L) — U such that ¢ o i = j. The uniqueness.of ¢ is evideat, since 1 and
Im i together generate U(L).

Example. Let L be abelian. Then the ideal J above is generated by all
x ® y—y ® x, hence coincides with the ideal / introduced in (17.1). This
means that (L) coincides with the symmetric algebra &(L). (In particular,
i L Y(L) is injective here.)

17.3. PBW Theorem and consequences

So far we know very little about the structure of (L), except that it
contains the scalars. For brevity, write T = (L), & = &(L}, U = U(L);
similarly, write ™, S™. Define a filtration on Ty T, = T° @ T le...®
T andlet U, = =(T,), U_y = 0. Clearly, U, U, < Uy, and U,, = U, Set
G"™ = U,jU,_, (this is just a vector space), and let the multiplication in U
define a bilinear map G™xG* — G"'F. (The map is well-defined; why?)

“This extends at once to a bilinear map Hx & — &, & = [ G", making ® a
. m=0

graded associative algebra with 1.

Since = maps T™ into U, the composite linear map s T™ — U, = G™
= U, U,_, makes sense. It is surjective, because m(T,— T ()} = U= Upeqe
The maps ¢, therefore combine to yield a linear map ¢: % — ®, which is
surjective (and sends 1 to 1). :

Lemma. ¢: T — G is an algebra homomorphism. Moreover, $(I) = 0,
50 ¢ induces @ homomorphism w of © = T/ onto ©®.

Progf. Let xe T™, y € T¥ be homogeneous tensors. By definition of the
product in &, (xp) = $(x)$(»), so it follows that ¢ is multiplicative on T.
Let x ® y—y @ x (x, ye L) be a typical generator of I. Then »{x @ y—
y @ x) € U,, by definition. On the other hand, m(x @ y—» @ x) = a{lxpl} e
U,, whence ¢(x ® y—y @ x) e UJU, = 0. It follows that F < Ker ¢. 1[I

The following theorem is the basic result about U(L); it (or its Corollary
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C) is called the Poincaré-Birkhoff-Witt Theorem (or PBW Theorem). The
proof will be given in (17.4), ‘

Theorem. The homomorphism w: & — © s an isomorphism of algebras.

Corollary A. Let W be a subspace of T™. Suppose the canonical map T™ —
S™ sends W isomorphically onto S™, Then w(W) is a complement to U, _,
in Uy,

Proof. Consider the diagram (all maps canonical}:

N
N

. Thanks to the lemma above (and the definitions), this is a commutative
diagram. Since w; & — @ is an isomorphism (by the theorem), the bottom
map sends W ¢ T™ isomorphically onto G". Reverting to the top map,
we get the corollary. [0 :

T

Corollary B, The canonical map i1 L — W(L) is injective (so L may be
identified with i(L)).

Proof. This is the special case W = T (=L) of Corollary A. T[]
We have allowed L to be infinite dimensional. In practice, the case where
L has countable basis is quite adequate for our purposes.

Corollary C. Let (x,, X3, Xa, - . .) be any ordered basis of L. Then the
elements Xypy ... Xigmy = ™Xi1y @ .. @ Xymy), M€ ZY, i =i2)... =
i(m), along with 1, form a basis of H(L).

Proof. Let W be the subspace of T™ spanned by all x;y, @ ... & Xigm),
i1y < ... < im). Evidently ¥ maps isomorphically onto S™, so Corollary
A shows that #(}#) is a complentent to U,,_; in U,. T

A basis of (L) of the type just constructed will be referred to simply as
a PBWY basis.

Corollary D. Let H be a subalgebra of L, and extend an ordered basis
(hy, fgn .. ) of H to an ordered basis (hy, ..., X1, .- 2) of L. Then the homo-
morphism Y(H) —~ W(L) induced by the injection H — L — W(L) is itself
injective, and W(L) is a free W(H)-module with free basis consisting of all
Xy« o« Figmy 1) £ H2) < ... = i(m), along with 1.

Proof. These assertions follow at once from Corollary C. B

For use much later, we record a special fact,

Corollary E. Let char F = 0. With notation as in (17.1), the composite
5" —» §™[ — U,, of canonical maps is a (linear) isomorphism of S"™L onto
a complement of U,_ in U,

Proof. Use Corollary A, with W = 8™ [

17.4. Proof of PBW Theorem : 93
174. Proof of PBW Theorem

Fix an ordered basis (x,;; A ¢ () of L. This choice identifies © with the
polynomial algebra in indeterminates z, (A =£1). For each sequence % =
(Ay, - .., ) of indices (m is called the length of T}, let 2y = 2, ... 7, € s™
andletxy = x, ®... @ x, T Call T increasing if A, < A5 £ ... £ Ay,
in the given ordering of Q; by fia, & is increasing and z, = 1. So {z7|%
increasing} fs a basis of &. Associated with the grading © = I S™ is the
filtration S, = S°@ ... ® S™ In the following lemmas, write A < % if
A< pforall pek.

Lemma A. For eack m e Z*, there exists a unique linear map fo: L & Sy
— & satisfying:

(A [, ® 25y = zyzg for A < E, zp € 5,

(B,) [l ® zp)—2;3z5 € Sy for k < m, zg € §).

(Cm) fm(xl ®fm(‘xu ® ZT)) = fm(xu ® fm(xk ® ZT)) +fm([x;1xu] ® ZT)fG?' a”
Zr € Sy

Moreover, the restriction of f,, to L @ S,_, agrees with fy, ;.

Proof. Notice that the terms in (C,,) alt make sense, once (B,) is proved.
Notice too that the restriction of f, to L @ S,,-, automatically satisfies
(Aus)y (Bue1)s (Cp—q), 8o this restricted map must coincide with f,,_,
because of the asserted uniqueness. To verify existemce and uniqueness
of f,,, we proceed by induction on m, For m = 0, only 25 = 1 occurs; therefore
we may let fo(x; ® 1) = 7, (and extend linearly to L & S¢). Evidently (4g),
(B,), (C,) are salisfied, and moreover, (Ao} shows that our choice of f; is
the only possible one.

Assuming the existence of a unique f,, ., satisfying (Am-1)s (Buli)h
(C,,), we shall show how to extend f,,., to a map fy. For this it will suffice
to define f,(x; & z5) when T is an increasing sequence of length m.

For the case A < %, (4,) cannot hold unless we define f.(x, ® z5) =
7,75 In case A < I fails, the first index p in I must be strictly less than A, so
% = (u, T), where of course o <7 and T has length m—1. By (d.—()
7y = 7,27 = froo (%, ® 27} Since p < T, fulx, ® z7) = z,zp is already
defined, so the left side of (C,) becomes fo(x; @ zz). On the other hand,
(B,,_,) implies that £,(x; ® 2¢) = fu_(x; @ z1) = 277 (mod S,,-;). This
shows that the right side of (C,) is already defined:

2,232+ fu- 103 ® P Hfuor(( x] ® 25 ¥ € Spe1e

The preceding remarks show that f, can be defined, and in only one way.
Moreover, (A4,) and (B,) clearly hold, as does (C.} in case o < Ap =T
But [x, x;] = —{x, x4 so (C,) also holds for A < p, A < T. When A = g,
(C,) is also true. It remains only to consider the case where neither A < T
nor g < Tis true. Write T = (v, ), where v £ ¥, v < A, v < p To keep the
notation under control, abbreviate £,(x ® z) by xz whenever xe L, z € S,




94 Existence Theorem

The induction hypothesis insures that x,z; = x,(x,2¢) = x(x2¢)+[x,
xv]z‘{"> and x,uz‘{" = sz‘l’+w (W € Sm—z)! by (B -2)' Since v < lP': Vo< (Cﬁ:)
applies already to x,(x,(z,z¢)). By induction, (C,) also applies to x;{x,w),
therefore to x;(x(x,2¢)). Consequently: (*} x;(x,zy} = x,{x,(x,29))+]x,
xv] (xuz"l")'*‘[xu xv] (xﬂ.z‘?)”!'[x). [xu xv]]z‘i"'

Recall that A, p are interchangeable throughout this argument. If we
interchange them in (*) and subtract the two resulting equations, we get:

xp(x,zp) — x (3,20 = x,(x;00,29)) — x, (2,032 ¢)) +x; [x,%, ]z —
=[x, [xax. ey = x([xax]ze) + 32 rax e
+[x, [exdlze = [xx,] (ze}+{x, Ix, ]
+ [y [xx )]+ [x, [ooxdl)ze = [xaxlzr

(thanks to the Jacobi identity).
This proves (C,,), and with it the lemma. []

Lemma B. There exists a representation p: L — ql() satisfying:

{a) plx;)zy = z;2p for A < K.

(B) p{x)zg = 2,2y (mod S,.), if X has length m.

Proof. Lemma A allows us to define a linear map f: LR® & > G
satisfying (4,), (B,), (C.) for all m (since £, restricted to L @ Sp—; 18 fr-1s
by the uniqueness part). In other words & becomes an I-module (condition
(C..)), affording a representation p which satisfies (a), (b), thanks to (4,,),
(Bn). O :

Lemma C. Let te T, NJ (J = Ker =, m: T — W canonical). Then the
homogeneous component t,, of t of degree m lies in I (the kernel of the canonical
map T > ©).

Proof. Write t,, as linear combination of basis elements xy;, (1 =i < 1),
each Z(i) of length m. The Lie homomorphism p: L — gi{ &) constructed
in Lemma B extends, by the universal property of 1, to an algebra homo-
morphism (also called p) T — End &, with J <~ Ker p. So p(f) = 0. But
p().1 is a polynomial whose term of highest degree is the appropriate
combination of the zy;, (1 < i < r), by Lemma B. Therefore this combina-
tion of the zy;, is 0 in &, and ¢, € I as required. [

Proof of PBW Theorem. Let te T™, w: T — U the canonical map. We
must show that #{f) e U, _, implies el But reT™, ={f) e U,_, together
imply that =(t) = «(¢") for some ¢’ € T,,,_,, whence t—¢' € J. Apply Lemma C
to the tensor t—¢" e T, N J: the homogeneous component of degree m
being ¢, we get tef. ]

17.5. Free Lie algebray

The reader may be familiar with the method of constructing groups by gen-
erators and relations. We shall use an analogous method in §18 to construct
semisimple Lie alpebras. For this one needs the notion of free Lie algebra.

Let L be a Lie algebra over F generated by a set X. We say L is free
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on X if, given any mapping ¢ of X into a Lie algebra M, there exists a
unique homomorphism i I — M extending ¢. The reader can easily verify
the wniqueness (up to a unique isomorphism) of such an algebra L. As
to its existence, we begin with a vector space F having X as basis, form
the tensor algebra (V) (viewed as Lie algebra via the bracket operation),
and let L be the Lie subalgebra of T(#) generated by X. Given any map ¢:
X — M, let $ be extended first to a linear map V' — M < (M), then (canoni-
cally) to an associative algebra homomorphism I{}) - U(M), or a Lie
homomorphism {whose restriction te L is the desired #: L — M, since s maps
the generators X into M)

We remark that if 1. is free on a set X, then a vector space ¥ can be given
an L-module structure simply by assigning to each x ¢ X an element of the
Lie algebra gl(¥) and extending canonically.

Finally, if L is free on X, and if R is the ideal of L generated by elements
f; (j running over some index set), we call L/R the Lic algebra with generators
x, and relations f; = 0, where x; are the images in L/R of the elements of X.

Exercises

1. Prove that if dim L < co, then M(L) has no zero divisors. [Hint: Use the
fact that the associated graded algebra ® is isomorphic to a polynomial
algebra.]

2. Let I be the two dimensional nonabelian Lie algebra (1.4), with [xy] = x.
Prove directly that i: L - (L) is injective (i.e., that J L = O).

3. If x e L, extend ad x to an endomorphism of U(L) by defining ad x(») =
xy—yx (v & U(L)). If dim L < <o, prove that each element of (L) lies
in a finite dimensional L-submodule. {If x, x;, ..., x, € L, verify that

ad x(x; ... Xp) = ¥ xy%, ... ad x(x) Xy
P

4. If L is a free Lie aigebra'on a set X, prove that W(L) is isomorphic to the
tensor algebra on a vector space having & as basis.

. Describe the free Lie algebra on a set X = {x}.

6. How is the PBW Theorem used in the construction of free Lie algebras?

i

Notes
Qur treatment of the PBW Theorem follows Bourbaki [1]. For another
approach, see Jacobson [1].
18. Generators and relations

We can now resume our study of a semisimple Lie algebra L over the
algebraically closed field F of characteristic 0. The object is to find a pre-




