B

CHAPTER 5 Nonlinear Systems
2 To verify this assertion, we

has a Lyapuncv function given by Lx,y) = x4+ Y
compuie the derivative of L along & gohation (x{t), y(£) by
dy
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Since dL/dt =0 only at the origit, this function decreases atong all nonequilib-
rum solution curves. But L cannotbe 2 gradient systenl, since the eigenvalues at (0,0
are complex (=1 & iy; so the origin is a spiral sink, which cannot OCCUr in gradient

systems. ; -

EXERCISES FOR SECTION 5.4 .
1. Consider thie system

' dx .

v function for the system.

(a) Verify that L,y = (x% + y2)/2 is a Lyapuno

(b) Sketch the jevel sets of L.
hase portrait of

(¢) What can you conctude about the P
mation given in parts (a) and (b) above? (Sketch the
a short essay describing what you know about the phase portrait

know it.)

the system from the infor-
phase portrait and write
and how you

2. Consider the system

(a) Verify that the function

for the system.

is a Lyapunov function
(b) Sketch the level sets of L.
(c) What can you conclude about the phase portrait of the s¥
mation in parts (a) and (by? (Sketch the phase portrait and

describing what you Jkmnow about the phase portrait and how you

stemn from the infor-
write a short essay
know it.)
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3. Consider the system
dx _
dr 7
dy
= Ay — (.1
dt x Y
(a) Verify that all solutions tend toward the origin as r increases, and sketch the

phase portrait. [Hirt: The system is linear.]
(b} Verify that L(x, y) = x2 + yZ is not a Lyapunov function for the system.
(¢) Verify that K (x, y) = 2x? + y2 /2 is a Lyapunov function for the system.

In Exercises 4-11, we consider the damped pendulum system

g

dr

dv g .

T —Tsmﬁ—» v,

where b is the damping coefficient, m is the mass of the bob, [ is the lengih of the arm,
and g is the acceleration of gravity (g ~ 9.8 m/s?).

4. What relationship must hold between the parameters b, m, and [ for the pericd of a
small swing back and forth of the damped pendulum to be one second?

5. Suppose we have a pendulum clock that uses a slightly damped pendulum to keep
time (that is, b is positive but b 22 0). The clock “ticks” each time the pendulum arm
crosses & = 0. If the mass of the pendulum bob is increased, does the clock run fast

“or slow?

6. Suppose we have a pendulum clock that uses only a slightly damped pendulum to
keep time. The clock “ticks” each time the pendulum arm crosses 4 = 0.
(a) As the clock “winds down” (so the amplitude of the swmgs decreases}, does
the clock run slower or faster?

(b) If the initial push of the pendulum is large so that the pendulum swings very
close to the vertical, will the clock run too fast or too slow?

7. For fixed values of b and [, for what values of the mass m will the pendulum be
usable as a clock?

8. Suppose we take / == 9.8 m (so g/l = 1), m = 1, and & large, say b = 4. For the
damped pendulum system above and with this choice of parameter values, do the
following.

(a) Find the eigenvalues and eigenvectors of the lmeanzed systemn at the equilib-
rium point {0, ().

{(b) Find the eigenvalues and elgenvectors of the linearized system at the equilib-

rium point (7, 0).

(c) Sketch the phase portrait near the equilibrium points.

(@) Sketch the entire phase porteait. [Hins: Begin by sketching the level sets of H
as in the text.]
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9. Suppose we have a pendulum clock that uses a slightly damped oscillator to keep
time. Suppose that the clock “ticks” each time the pendulum arm crosses 6 = 0, but
the arm must reach a height of # = £0.1 to record the swing (that is, if the entire
swing takes place with —0.1 < 8 < 0.1, then the clock doesn’t tick). Suppose one

_ tick is one second. In texrms of the parameters b, m, and I, give a rough estimate of

i how long the clock can keep accurate time. Comment on why pendulum clocks must

be wound.

10. (a) For the slightly damped pendulum (5 > 0 but b close to zero), find the set of
all initial conditions (4 (0}, (0}) that execute exactly two complete revolutions
for t > 0 (that is, pass the vertical position exactly twice) before settling into
a back-and-forth swinging motion. Sketch the phase portrait for the slightly
damped pendulum and shade these initial conditions.

(b) Repeat part (&) for solutions that execute exactly five complete revolutions for
¢ > before settling into back-and-forth swinging motion.

11. Suppose that rather than adding damping to the ideal pendulum, we add a small
amount of “antidamping”; that is, we take b slightly negative in the damped pen-
dulum system. Physically this would mean that whenever the velocity is nonzero,
the pendulum is accelerated in the direction of motion.

(a} Linearize and classify the equilibrium points in this situation.

(b) Sketch the phase porirait for this system.

(¢) Describe in a brief paragraph the behavior of a solution with initial condition
near@ =v =0,

12, Let G{x,y) = X - 3xy2.
(2) What is the gradient system with vecter field g-iveri by the gradient of G7
(b) Sketch the graph of G and the level sets of G.
(c) Sketch the phase portrait of the gradient system in part (a).

13. Let G(x, y) = x% — y%.
(a) What is the gradient system with vector field given by the gradient of G?
(b) Classify the equilibrium point at the origin. [Hint: This system is linear.]
(¢) Sketch the graph of G and the level sets of G.
(d) Sketch the phase portrait of the gradient system in part (a).
Remark: This is why saddle equilibrium points are called saddles.

14. Let G(x, y) = x% + y%.
(a) What is the gradient system with vecor field given by the gradient of G?
{b) Classify the equilibrium point at the origin. [Hint: The system Is linear.]

(¢) Sketch the graph of G and the level sets of G.
(d) Sketch the phase portrait of the gradient system in patt (a).
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i to keep _ 15. For the “two dead fish” example given by the system
' =0, but ;
the entire : dx 5
Jpose one E =X —2X
simate of " dy
dcks must - =Y
the set of () find the linearized system for the equilibrium peint at the origin and verify that
swyolutions the origin is a saddle,
ttling into (b) find the linearized system for the equilibrium point at (1, 0) and verify that this
& slightly point is a sink,
(¢) from the eigenvalues and eigenvectors of the system in part (b), determine from
utions for which direction the model lobster will approach the equilibrium point (1, 0),
and
(d) check that the linearized system at the equilibiium point (—1, 0) is the same as
d a small that at (1, 0).
iped pen-
. NONZETO,

16. The system for the “two dead fish” exarnple

condition

FG? has the special property that the equations “decouple”; that is, the equation for dx /dt
depends only on x and the equation for dy /dt depends only on y.
(a) Sketch the phase lines for the dx /dt and dy /dt equations.
(b) Using these phase lines, sketch the phase portrait of the system.
(G7 17. Suppose the smell of a bunch of dead fish in the region—2 <x <2, -2<y<2is
2ar. |

given by the function

x4+y4

S y) =z 4y - —

~3x%y? 4-100.

(a) What is the gradient system whose vector field is the gradient of §?
(b) Using HPGSystemSolver, sketch the phase portrait for this system.
(¢} How many dead fish are there, and where are they?

(d) Using the results from part (b), sketch the level sets of .
“(e) Why is the model not realistic for large values of x or y?

fG?
ar. |
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18. A reasonable model for the smell at (x, y) of a dead fish located at (x1, y1) is given
by
1

R e

That is, 51 is given by 1 over the distance to the dead fish squared plus 1.

{(a) Form the function § giving the total smell from three dead fish located at (1, 0),
(—1,0), and (0, 2).
(b) Sketch the level sets of S.
! (¢) Sketch the phase portrait of the gradient system

I dx a8

dr ax
dy _ 8§
M" de By’

(d) Write out explicitly the formulas for the right-hand sides of the equations in

pait (c).
. (e) Why did we use distance squared plus 1 instead of just distance squared in
the definition of 51?7 Why did we use distance squared plus 1 instead of just

4 ‘ distance plus 1 in the definition of §1? -
|
ik
19. Suppose
4 dx
"&? - f(x, }’)
dy
1 E = g(JC, y)
is a gradient system. That is, there exists a function. G(x, ¥) such that f = 8G/ox
T and g = 9G/ay.
i (a) Verify that if f and g have continuous partial derivatives, then 8f /8y = 8g/dx
forall (x, y).

(b) Use part (a) to show that the system

dx 5
b 3
dtﬁ x° 4 3xy
dy 3
I — =2
M dt Xty

is not a gradient system.
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20. The following phase portrait cannot occur for a gradient system. Why not?

21. Let

\"

)

¢

/’

1
H(y,v) = Evz + V()

for some function V and consider the associated Hamiltonian system

dy 0H

—_— ==

dt av

dv 'BH_ dav

dt 3y dy

Let k be a positive constant. Give a physical interpretation of the relationship be-
tween the Hamiltonian system and the system

dy«_v

dr

d

& ~d—V - kv,
dt dy

Shoew that H is a Lyapunov function for this systermn.

22. Consider the Hamiltonian system

and the gradient system

dx 8H
dr 3y
dy 0H
dr - ax
dx o
dr  oax
dy oH
dr ~ ay’

where H is the same function for both systems. How are the two phase portraits

related?
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23, Check that

is constant along solutions of

24. Suppos
model from the section, we have

5.5 NONLINEAR SYSTEMS IN THREE D

2

e s

H 3 3 s = —
(x1, %2, P1, P2) oy 2 2

dx1 _ P1

dr my i

dxa P2

dt ms

d
7571 — —ky(x; — L1) + ka2 — X1~ L)

dp2

T —kp(xy — x1 — L2).

1l

e a building with a tyned-mass damper is in an earthquake. Adapting our

dxy _ Pt

dt mi

dxy _ P2
dar ma

d
4PL _ _y(xp — L) Hhelxa — X1 T L) +b (% - %) + Acoswt

dt

d

_dP_Z_ = —ky{x2 — X1 -'—LQ,)—'-b(—p—zﬂ—El) ,
t may mi

erm. How does the enetgy H behave with re-
tern for various values of ky? First, compuic
on. Use the parameter values
= 0.1) and assumé

e A cos wf is the added forcing t

solution of this sys
then graph this functt
=1,k =1Lm= 0.05,b

wher
gpect to time for a
the energy as a function of time,
of the example in the section (m1

A=1

IMENSIONS

We saw in Section 2.8 that solutions of differential equations with three dependent vart
ables are curves in three-dimensional space. These curves can 100p around each other
very complicated ways. Tn Section 3.8 we studied the behavior of linear systems wi
three dependent variables. The behavior of linear systems can be determined bY the




