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1 New modules from old

A few preliminaries are necessary before jumping into the representation theory of semisim-
ple algebras. First a word on creating new g-modules from old. Any Lie algebra g has an
action on a 1-dimensional vector space (or I itself), given by the trivial action. Second, any
action on spaces V and W can be extended to an action on V ® W by forcing the Leibnitz
rule: for any basis vector v @ w € V ® W we define

z. (VW) = 2V @ W+ v rw (1)

One easily checks that z.y.(v@w) —y.2.(v@w) = [z,y].(v®w). Assuming g has an action
on V, it has an action on its dual V* (recall V* is the vector space of linear functionals
V — ), given by

(v.f)(x) = —f(zw) (2)

for any functional f : V — F in V*. This is in fact a version of the “forcing the Leibnitz
rule.” That is, recalling that we defined z.(f(v)) = 0, we define z.f € V* implicitly by

z. (f(v) = (z.f)(v) + f(z.v). (3)
For any vector spaces V, W, we have an isomorphism
Hom(V, W) =~ V*@W, (4)

so Hom(V, W) is a g-module whenever V' and W are. This can be defined using the above
rules for duals and tensor products, or, equivalently, by again forcing the Leibnitz rule: for
F € Hom(V,W), we define x.F € Hom(V, W) implicitly by

z.(F(v)) = (z.F)(v) + F(x.v). (5)



2 Schur’s lemma and Casimir elements

Theorem 2.1 (Schur’s Lemma) If g has an irreducible representation on gl(V') and if
f € End(V) commutes with every x € g, then f is multiplication by a constant.

Pf. The operator f has a complete eigenspace decomposition, which is preserved by every
x € g. Namely if v € V belongs to the generalized eigenspace with eigenvector A, meaning
(f = A)*.v = 0 for some k, then

(f =AD)rzv = o.(f = A)Fw = 0. (6)

Thus the generalized A-eigenspace is preserved by g and is therefore a sub-representation.
By irreducibility, this must be all of V. Clearly then f— I is a nilpotent operator on V' that
commutes with g. Thus Vo = {v € V| (f — AI).v = 0} is non-trivial. But Vj is preserved by
g, so must equal V. Therefore f = AI. O

Now assume V is a g-module, or specifically that a homomorphism ¢ : g — gl(V)
exists. As with the adjoint representation we can establish a bilinear form B, : g x g = F

By(z,y) = Tr(p(x)e(y)). (7)
If ¢ is the adjoint map, of course this is the Killing form. Clearly
B@([xﬂy]wz) = Béﬁ($7 ly, 2]) (8)

so that the radical of B, is an ideal of g. Also, the Cartan criterion implies that the image
under ¢ of the radical of B, is solvable.

Thus if ¢ is a faithful representation of a semisimple algebra, B, is non-degenerate.
Letting {x;}_; be a basis for g, a (unique) dual basis {y;}_; exists, meaning the y; satisfy

By(zi, yj) = dij- 9)

We define the casimir element c, of such a representation by

ce = > ¢(xi)p(y:) € EndV. (10)
=1

Lemma 2.2 Given a faithful representation ¢ of a semisimple Lie algebra, the casimir
element commutes with all endomorphisms in ¢(g).

Pf. Let x € g be arbitrary, and define constants

[z,2:] = aijz;

[Ivyi] = bij Z;

(1)



We have
—bji = =Y bpbix = —Bg(wi,[z,y;]) = Bollv, @il ye) = Y aidn = ai;  (12)
k=1 k=1

Therefore

n

[o(x), o] = Y [e(x), lai)e(ys)]
=1

= Y le@), el o) + Y el lp(x), o)

i=1 i=1

= ng([m, zi]) (yi) + Zsﬁ(ﬂﬁi)@([l‘a yil)

= Z aijtp(l'j)w(yi) + Z bl]@(xl)w (yJ)

ij=1 ij=1
=0
O
Lemma 2.3 If ¢ : g — gl(V) is an irreducible, faithful representation of the semisimple

Lie algebra g, then the Casimir endomorphism c, acts by constant multiplication, with the
constant equal to dim(g)/dim (V).

Pf. That ¢, acts by constant multiplication by some A € F follows from Schur’s lemma. We
see that

dim(g) dim(g)
Tr(cy) = Z Tr(p(z:)e(yi) = Z By(wi, yi) = dim(g) (14)
i=1 i=1
and also that Tr(c,) = X - dim(V). Thus A = dim(g)/dim(V). O

3 Weyl’s Theorem

Lemma 3.1 If p: g — gl(V) is a representation and g is semisimple, then o(g) C sl(V).

Pf. Because [g, g] = g, we have [p(g), ¢(9)] = »([g,0]) = ¢(9). O

Theorem 3.2 (Weyl) Let ¢ : g — gl(V) be a Tepresentatiora of a semisimple Lie algebra.
Then ¢ is completely reducible.

lunder the usual conditions: g and V are finite dimensional, and the field is algebraically closed and of
characterstic 0.



Pf. First, we can assume ¢ is faithful, for Ker(p) consists of summands on g, and we can
quotient g by these summands without affecting the reducibility of the representation.

Step I: Case of an irreducible codimension 1 submodule. Assume ¢ is a representation
of gon V, and assume W C V is an irreducible codimension 1 submodule. The representa-
tion on V, being faithful, has a Casimir operator c,,, which acts by constant multiplication on
W (because W is irreducible). In fact Tr(c,) = dim(g) > 0. Since V/W is a 1-dimensional
module and since pg = [pg, pg] (by the lemma), we have that V/W is a trivial g-module,
so ¢, also acts on V/W by multiplication by 0. All this means that ¢, : V' — V has a
1-dimensional Kernel that trivially intersects W, so

V = W Ker(c,). (15)
Since ¢, commutes with ¢(g), we have that Ker(c,) is indeed a (trivial) g-module.

Step II:  Case of a general codimension 1 irreducible submodule. Let W C V be an
arbitrary codimension 1 submodule of g. If W is not irreducible, there is another submodule
W1 C W, which we can assume to be maximal. Then W/Wj is an irreducible submodule of
V /W1, and still has codimension 1. Thus by step I, we have

V/iwy, = W/Wy eV /Wi, (16)

where V3 /W7 is a l-dimensional submodule of V/W;. Because dim(W) # 0, we have
dim(Vy) < dim(V). We also have that W is a codimension 1 submodule of V;.

Since dim (V1) < dim(V'), an induction argument lets us assert V; that V; = W; & Fz,
for some z € Vj, as g-modules. Note that FznNW = {0}, so V = W @& Fz as vector
spaces; the question is whether this is a g-module decomposition. However because V/W; =
(W/W1) @ (V1 /W7), we have g.WW C W, so indeed W @ Fz is a g-module decomposition.

Step III: The general case. Assume W C V is submodule of strictly smaller dimension,
and let V C Hom(V,W) be the subspace of Hom(V,W) consisting of maps that act by
constant multiplication on W. Let W C V be the subset of maps that act as multiplication
by zero on W. Moreover, W C V has codimension, as any element of V/W is determined
by its scalar action on W.

However we can prove that V and VW are g-modules. Letting F' € V, w € W, and x € g,
we have that F(w) = Aw for some A € F and, since z.w € W also F(z.w) = Az.w. Thus

(x.F)(w) =z.(F(w)) — Flz.w) = z.(Aw) — AMz.w) = 0. (17)
Thus all operators in g take V to W, so in particular they are both g-modules.

By Step II above, there is a g-submodule in V complimentary to W, spanned by some
operator F). Scaling F; we can assume F} |y is multiplication by 1. Because F) generates
a 1-dimensional submodules and g acts as an element of sl(1,C) ~ {0}, we have g.F; = 0.
Thus we have that x € g, v € V implies

0 = (z.F1)(v) = z.(Fi1(v)) — Fi(zw). (18)



This is the same as saying F} is a g-module homomorphism V' — W. Its kernel is therefore
a g module, and, since Fj is the identity on V and maps V to W, must be complimentary
as a vector space to W. Therefore

V =W & Ker(F1) (19)

as g-modules. ]
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