Lecture 7 - Complete Reducibility of Representations of Semisimple Algebras

September 27, 2012

1 New modules from old

A few preliminaries are necessary before jumping into the representation theory of semisimple algebras. First a word on creating new \mathfrak{g}-modules from old. Any Lie algebra \mathfrak{g} has an action on a 1-dimensional vector space (or \mathbb{F} itself), given by the trivial action. Second, any action on spaces V and W can be extended to an action on $V \otimes W$ by forcing the Leibnitz rule: for any basis vector $v \otimes w \in V \otimes W$ we define

$$
\begin{equation*}
x .(v \otimes w)=x . v \otimes w+v \otimes x . w \tag{1}
\end{equation*}
$$

One easily checks that $x \cdot y \cdot(v \otimes w)-y \cdot x \cdot(v \otimes w)=[x, y] \cdot(v \otimes w)$. Assuming \mathfrak{g} has an action on V, it has an action on its dual V^{*} (recall V^{*} is the vector space of linear functionals $V \rightarrow \mathbb{F}$), given by

$$
\begin{equation*}
(v . f)(x)=-f(x . v) \tag{2}
\end{equation*}
$$

for any functional $f: V \rightarrow \mathbb{F}$ in V^{*}. This is in fact a version of the "forcing the Leibnitz rule." That is, recalling that we defined $x .(f(v))=0$, we define $x . f \in V^{*}$ implicitly by

$$
\begin{equation*}
x .(f(v))=(x . f)(v)+f(x . v) \tag{3}
\end{equation*}
$$

For any vector spaces V, W, we have an isomorphism

$$
\begin{equation*}
\operatorname{Hom}(V, W) \approx V^{*} \otimes W \tag{4}
\end{equation*}
$$

so $\operatorname{Hom}(V, W)$ is a \mathfrak{g}-module whenever V and W are. This can be defined using the above rules for duals and tensor products, or, equivalently, by again forcing the Leibnitz rule: for $F \in \operatorname{Hom}(V, W)$, we define $x . F \in \operatorname{Hom}(V, W)$ implicitly by

$$
\begin{equation*}
x \cdot(F(v))=(x \cdot F)(v)+F(x \cdot v) . \tag{5}
\end{equation*}
$$

2 Schur's lemma and Casimir elements

Theorem 2.1 (Schur's Lemma) If \mathfrak{g} has an irreducible representation on $\mathfrak{g l}(V)$ and if $f \in \operatorname{End}(V)$ commutes with every $x \in \mathfrak{g}$, then f is multiplication by a constant.

Pf. The operator f has a complete eigenspace decomposition, which is preserved by every $x \in \mathfrak{g}$. Namely if $v \in V$ belongs to the generalized eigenspace with eigenvector λ, meaning $(f-\lambda I)^{k} . v=0$ for some k, then

$$
\begin{equation*}
(f-\lambda I)^{k} \cdot x \cdot v=x \cdot(f-\lambda I)^{k} \cdot v=0 \tag{6}
\end{equation*}
$$

Thus the generalized λ-eigenspace is preserved by \mathfrak{g} and is therefore a sub-representation. By irreducibility, this must be all of V. Clearly then $f-\lambda I$ is a nilpotent operator on V that commutes with \mathfrak{g}. Thus $V_{0}=\{v \in V \mid(f-\lambda I) . v=0\}$ is non-trivial. But V_{0} is preserved by \mathfrak{g}, so must equal V. Therefore $f=\lambda I$.

Now assume V is a \mathfrak{g}-module, or specifically that a homomorphism $\varphi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ exists. As with the adjoint representation we can establish a bilinear form $B_{\varphi}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{F}$

$$
\begin{equation*}
B_{\varphi}(x, y)=\operatorname{Tr}(\varphi(x) \varphi(y)) \tag{7}
\end{equation*}
$$

If φ is the adjoint map, of course this is the Killing form. Clearly

$$
\begin{equation*}
B_{\varphi}([x, y], z)=B_{\varphi}(x,[y, z]) \tag{8}
\end{equation*}
$$

so that the radical of B_{φ} is an ideal of \mathfrak{g}. Also, the Cartan criterion implies that the image under φ of the radical of B_{φ} is solvable.

Thus if φ is a faithful representation of a semisimple algebra, B_{φ} is non-degenerate. Letting $\left\{x_{i}\right\}_{i=1}^{n}$ be a basis for \mathfrak{g}, a (unique) dual basis $\left\{y_{i}\right\}_{i=1}^{n}$ exists, meaning the y_{i} satisfy

$$
\begin{equation*}
B_{\varphi}\left(x_{i}, y_{j}\right)=\delta_{i j} \tag{9}
\end{equation*}
$$

We define the casimir element c_{φ} of such a representation by

$$
\begin{equation*}
c_{\varphi}=\sum_{i=1}^{n} \varphi\left(x_{i}\right) \varphi\left(y_{i}\right) \in \text { End } V \tag{10}
\end{equation*}
$$

Lemma 2.2 Given a faithful representation φ of a semisimple Lie algebra, the casimir element commutes with all endomorphisms in $\varphi(\mathfrak{g})$.

Pf. Let $x \in \mathfrak{g}$ be arbitrary, and define constants

$$
\begin{align*}
& {\left[x, x_{i}\right]=a_{i j} x_{j}} \\
& {\left[x, y_{i}\right]=b_{i j} x_{j}} \tag{11}
\end{align*}
$$

We have

$$
\begin{equation*}
-b_{j i}=-\sum_{k=1}^{n} b_{j k} \delta_{i k}=-B_{\varphi}\left(x_{i},\left[x, y_{j}\right]\right)=B_{\varphi}\left(\left[x, x_{i}\right], y_{k}\right)=\sum_{k=1}^{n} a_{i j} \delta_{j k}=a_{i j} \tag{12}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
{\left[\varphi(x), c_{\varphi}\right] } & =\sum_{i=1}^{n}\left[\varphi(x), \varphi\left(x_{i}\right) \varphi\left(y_{i}\right)\right] \\
& =\sum_{i=1}^{n}\left[\varphi(x), \varphi\left(x_{i}\right)\right] \varphi\left(y_{i}\right)+\sum_{i=1}^{n} \varphi\left(x_{i}\right)\left[\varphi(x), \varphi\left(y_{i}\right)\right] \\
& =\sum_{i=1}^{n} \varphi\left(\left[x, x_{i}\right]\right) \varphi\left(y_{i}\right)+\sum_{i=1}^{n} \varphi\left(x_{i}\right) \varphi\left(\left[x, y_{i}\right]\right) \\
& =\sum_{i, j=1}^{n} a_{i j} \varphi\left(x_{j}\right) \varphi\left(y_{i}\right)+\sum_{i, j=1}^{n} b_{i j} \varphi\left(x_{i}\right) \varphi\left(y_{j}\right) \\
& =0
\end{aligned}
$$

Lemma 2.3 If $\varphi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is an irreducible, faithful representation of the semisimple Lie algebra \mathfrak{g}, then the Casimir endomorphism c_{φ} acts by constant multiplication, with the constant equal to $\operatorname{dim}(\mathfrak{g}) / \operatorname{dim}(V)$.

Pf. That c_{φ} acts by constant multiplication by some $\lambda \in \mathbb{F}$ follows from Schur's lemma. We see that

$$
\begin{equation*}
\operatorname{Tr}\left(c_{\varphi}\right)=\sum_{i=1}^{\operatorname{dim}(\mathfrak{g})} \operatorname{Tr}\left(\varphi\left(x_{i}\right) \varphi\left(y_{i}\right)\right)=\sum_{i=1}^{\operatorname{dim}(\mathfrak{g})} B_{\varphi}\left(x_{i}, y_{i}\right)=\operatorname{dim}(\mathfrak{g}) \tag{14}
\end{equation*}
$$

and also that $\operatorname{Tr}\left(c_{\varphi}\right)=\lambda \cdot \operatorname{dim}(V)$. Thus $\lambda=\operatorname{dim}(\mathfrak{g}) / \operatorname{dim}(V)$.

3 Weyl's Theorem

Lemma 3.1 If $\varphi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is a representation and \mathfrak{g} is semisimple, then $\varphi(\mathfrak{g}) \subseteq \mathfrak{s l}(V)$.

Pf. Because $[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$, we have $[\varphi(\mathfrak{g}), \varphi(\mathfrak{g})]=\varphi([\mathfrak{g}, \mathfrak{g}])=\varphi(\mathfrak{g})$.

Theorem 3.2 (Weyl) Let $\varphi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ be a representation of a semisimple Lie algebra. Then φ is completely reducible.

[^0]Pf. First, we can assume φ is faithful, for $\operatorname{Ker}(\varphi)$ consists of summands on \mathfrak{g}, and we can quotient \mathfrak{g} by these summands without affecting the reducibility of the representation.

Step I: Case of an irreducible codimension 1 submodule. Assume φ is a representation of \mathfrak{g} on V, and assume $W \subset V$ is an irreducible codimension 1 submodule. The representation on V, being faithful, has a Casimir operator c_{φ}, which acts by constant multiplication on W (because W is irreducible). In fact $\operatorname{Tr}\left(c_{\varphi}\right)=\operatorname{dim}(\mathfrak{g})>0$. Since V / W is a 1-dimensional module and since $\varphi \mathfrak{g}=[\varphi \mathfrak{g}, \varphi \mathfrak{g}]$ (by the lemma), we have that V / W is a trivial \mathfrak{g}-module, so c_{φ} also acts on V / W by multiplication by 0 . All this means that $c_{\varphi}: V \rightarrow V$ has a 1-dimensional Kernel that trivially intersects W, so

$$
\begin{equation*}
V=W \oplus \operatorname{Ker}\left(c_{\varphi}\right) \tag{15}
\end{equation*}
$$

Since c_{φ} commutes with $\varphi(\mathfrak{g})$, we have that $\operatorname{Ker}\left(c_{\varphi}\right)$ is indeed a (trivial) \mathfrak{g}-module.
Step II: Case of a general codimension 1 irreducible submodule. Let $W \subset V$ be an arbitrary codimension 1 submodule of \mathfrak{g}. If W is not irreducible, there is another submodule $W_{1} \subset W$, which we can assume to be maximal. Then W / W_{1} is an irreducible submodule of V / W_{1}, and still has codimension 1 . Thus by step I, we have

$$
\begin{equation*}
V / W_{1}=W / W_{1} \oplus V_{1} / W_{1} \tag{16}
\end{equation*}
$$

where V_{1} / W_{1} is a 1 -dimensional submodule of V / W_{1}. Because $\operatorname{dim}(W) \neq 0$, we have $\operatorname{dim}\left(V_{1}\right)<\operatorname{dim}(V)$. We also have that W_{1} is a codimension 1 submodule of V_{1}.

Since $\operatorname{dim}\left(V_{1}\right)<\operatorname{dim}(V)$, an induction argument lets us assert V_{1} that $V_{1}=W_{1} \oplus \mathbb{F} z$, for some $z \in V_{1}$, as \mathfrak{g}-modules. Note that $\mathbb{F} z \cap W=\{0\}$, so $V=W \oplus \mathbb{F} z$ as vector spaces; the question is whether this is a \mathfrak{g}-module decomposition. However because $V / W_{1}=$ $\left(W / W_{1}\right) \oplus\left(V_{1} / W_{1}\right)$, we have $\mathfrak{g} . W \subseteq W$, so indeed $W \oplus \mathbb{F} z$ is a \mathfrak{g}-module decomposition.

Step III: The general case. Assume $W \subset V$ is submodule of strictly smaller dimension, and let $\mathcal{V} \subset \overline{\operatorname{Hom}}(V, W)$ be the subspace of $\operatorname{Hom}(V, W)$ consisting of maps that act by constant multiplication on W. Let $\mathcal{W} \subset \mathcal{V}$ be the subset of maps that act as multiplication by zero on W. Moreover, $\mathcal{W} \subset \mathcal{V}$ has codimension, as any element of $\mathcal{V} / \mathcal{W}$ is determined by its scalar action on W.

However we can prove that \mathcal{V} and \mathcal{W} are \mathfrak{g}-modules. Letting $F \in \mathcal{V}, w \in W$, and $x \in \mathfrak{g}$, we have that $F(w)=\lambda w$ for some $\lambda \in \mathbb{F}$ and, since $x . w \in W$ also $F(x . w)=\lambda x$. w. Thus

$$
\begin{equation*}
(x . F)(w)=x .(F(w))-F(x . w)=x .(\lambda w)-\lambda(x . w)=0 \tag{17}
\end{equation*}
$$

Thus all operators in \mathfrak{g} take \mathcal{V} to \mathcal{W}, so in particular they are both \mathfrak{g}-modules.
By Step II above, there is a \mathfrak{g}-submodule in \mathcal{V} complimentary to \mathcal{W}, spanned by some operator F_{1}. Scaling F_{1} we can assume $\left.F_{1}\right|_{W}$ is multiplication by 1. Because F_{1} generates a 1-dimensional submodules and \mathfrak{g} acts as an element of $\mathfrak{s l}(1, \mathbb{C}) \approx\{0\}$, we have $\mathfrak{g} \cdot F_{1}=0$. Thus we have that $x \in \mathfrak{g}, v \in V$ implies

$$
\begin{equation*}
0=\left(x . F_{1}\right)(v)=x .\left(F_{1}(v)\right)-F_{1}(x . v) \tag{18}
\end{equation*}
$$

This is the same as saying F_{1} is a \mathfrak{g}-module homomorphism $V \rightarrow W$. Its kernel is therefore a \mathfrak{g} module, and, since F_{1} is the identity on V and maps V to W, must be complimentary as a vector space to W. Therefore

$$
\begin{equation*}
V=W \oplus \operatorname{Ker}\left(F_{1}\right) \tag{19}
\end{equation*}
$$

as \mathfrak{g}-modules.

[^0]: ${ }^{1}$ under the usual conditions: \mathfrak{g} and V are finite dimensional, and the field is algebraically closed and of characterstic 0 .

