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1 New modules from old

A few preliminaries are necessary before jumping into the representation theory of semisim-
ple algebras. First a word on creating new g-modules from old. Any Lie algebra g has an
action on a 1-dimensional vector space (or F itself), given by the trivial action. Second, any
action on spaces V and W can be extended to an action on V ⊗W by forcing the Leibnitz
rule: for any basis vector v ⊗ w ∈ V ⊗W we define

x.(v ⊗ w) = x.v ⊗ w + v ⊗ x.w (1)

One easily checks that x.y.(v⊗w)− y.x.(v⊗w) = [x, y].(v⊗w). Assuming g has an action
on V , it has an action on its dual V ∗ (recall V ∗ is the vector space of linear functionals
V → F), given by

(v.f)(x) = −f(x.v) (2)

for any functional f : V → F in V ∗. This is in fact a version of the “forcing the Leibnitz
rule.” That is, recalling that we defined x.(f(v)) = 0, we define x.f ∈ V ∗ implicitly by

x. (f(v)) = (x.f)(v) + f(x.v). (3)

For any vector spaces V , W , we have an isomorphism

Hom(V, W ) ≈ V ∗ ⊗W, (4)

so Hom(V,W ) is a g-module whenever V and W are. This can be defined using the above
rules for duals and tensor products, or, equivalently, by again forcing the Leibnitz rule: for
F ∈ Hom(V,W ), we define x.F ∈ Hom(V,W ) implicitly by

x.(F (v)) = (x.F )(v) + F (x.v). (5)
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2 Schur’s lemma and Casimir elements

Theorem 2.1 (Schur’s Lemma) If g has an irreducible representation on gl(V ) and if
f ∈ End(V ) commutes with every x ∈ g, then f is multiplication by a constant.

Pf. The operator f has a complete eigenspace decomposition, which is preserved by every
x ∈ g. Namely if v ∈ V belongs to the generalized eigenspace with eigenvector λ, meaning
(f − λI)k.v = 0 for some k, then

(f − λI)k.x.v = x.(f − λI)k.v = 0. (6)

Thus the generalized λ-eigenspace is preserved by g and is therefore a sub-representation.
By irreducibility, this must be all of V . Clearly then f−λI is a nilpotent operator on V that
commutes with g. Thus V0 = {v ∈ V | (f −λI).v = 0} is non-trivial. But V0 is preserved by
g, so must equal V . Therefore f = λI. �

Now assume V is a g-module, or specifically that a homomorphism ϕ : g → gl(V )
exists. As with the adjoint representation we can establish a bilinear form Bϕ : g× g→ F

Bϕ(x, y) = Tr (ϕ(x)ϕ(y)). (7)

If ϕ is the adjoint map, of course this is the Killing form. Clearly

Bϕ([x, y], z) = Bϕ(x, [y, z]) (8)

so that the radical of Bϕ is an ideal of g. Also, the Cartan criterion implies that the image
under ϕ of the radical of Bϕ is solvable.

Thus if ϕ is a faithful representation of a semisimple algebra, Bϕ is non-degenerate.
Letting {xi}ni=1 be a basis for g, a (unique) dual basis {yi}ni=1 exists, meaning the yi satisfy

Bϕ(xi, yj) = δij . (9)

We define the casimir element cϕ of such a representation by

cϕ =

n∑
i=1

ϕ(xi)ϕ(yi) ∈ End V. (10)

Lemma 2.2 Given a faithful representation ϕ of a semisimple Lie algebra, the casimir
element commutes with all endomorphisms in ϕ(g).

Pf. Let x ∈ g be arbitrary, and define constants

[x, xi] = aij xj

[x, yi] = bij xj
(11)
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We have

− bji = −
n∑

k=1

bjkδik = −Bϕ(xi, [x, yj ]) = Bϕ([x, xi], yk) =

n∑
k=1

aijδjk = aij (12)

Therefore

[ϕ(x), cϕ] =

n∑
i=1

[ϕ(x), ϕ(xi)ϕ(yi)]

=

n∑
i=1

[ϕ(x), ϕ(xi)]ϕ(yi) +

n∑
i=1

ϕ(xi) [ϕ(x), ϕ(yi)]

=

n∑
i=1

ϕ ([x, xi])ϕ(yi) +

n∑
i=1

ϕ(xi)ϕ ([x, yi])

=

n∑
i,j=1

aijϕ (xj)ϕ(yi) +

n∑
i,j=1

bijϕ(xi)ϕ (yj)

= 0

(13)

�

Lemma 2.3 If ϕ : g → gl(V ) is an irreducible, faithful representation of the semisimple
Lie algebra g, then the Casimir endomorphism cϕ acts by constant multiplication, with the
constant equal to dim(g)/dim(V ).

Pf. That cϕ acts by constant multiplication by some λ ∈ F follows from Schur’s lemma. We
see that

Tr(cϕ) =

dim(g)∑
i=1

Tr (ϕ(xi)ϕ(yi)) =

dim(g)∑
i=1

Bϕ(xi, yi) = dim(g) (14)

and also that Tr(cϕ) = λ · dim(V ). Thus λ = dim(g)/dim(V ). �

3 Weyl’s Theorem

Lemma 3.1 If ϕ : g→ gl(V ) is a representation and g is semisimple, then ϕ(g) ⊆ sl(V ).

Pf. Because [g, g] = g, we have [ϕ(g), ϕ(g)] = ϕ([g, g]) = ϕ(g). �

Theorem 3.2 (Weyl) Let ϕ : g→ gl(V ) be a representation1 of a semisimple Lie algebra.
Then ϕ is completely reducible.

1under the usual conditions: g and V are finite dimensional, and the field is algebraically closed and of
characterstic 0.
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Pf. First, we can assume ϕ is faithful, for Ker(ϕ) consists of summands on g, and we can
quotient g by these summands without affecting the reducibility of the representation.

Step I: Case of an irreducible codimension 1 submodule. Assume ϕ is a representation
of g on V , and assume W ⊂ V is an irreducible codimension 1 submodule. The representa-
tion on V , being faithful, has a Casimir operator cϕ, which acts by constant multiplication on
W (because W is irreducible). In fact Tr(cϕ) = dim(g) > 0. Since V/W is a 1-dimensional
module and since ϕg = [ϕg, ϕg] (by the lemma), we have that V/W is a trivial g-module,
so cϕ also acts on V/W by multiplication by 0. All this means that cϕ : V → V has a
1-dimensional Kernel that trivially intersects W , so

V = W ⊕Ker(cϕ). (15)

Since cϕ commutes with ϕ(g), we have that Ker(cϕ) is indeed a (trivial) g-module.

Step II: Case of a general codimension 1 irreducible submodule. Let W ⊂ V be an
arbitrary codimension 1 submodule of g. If W is not irreducible, there is another submodule
W1 ⊂W , which we can assume to be maximal. Then W/W1 is an irreducible submodule of
V/W1, and still has codimension 1. Thus by step I, we have

V/W1 = W/W1 ⊕ V1/W1, (16)

where V1/W1 is a 1-dimensional submodule of V/W1. Because dim(W ) 6= 0, we have
dim(V1) < dim(V ). We also have that W1 is a codimension 1 submodule of V1.

Since dim(V1) < dim(V ), an induction argument lets us assert V1 that V1 = W1 ⊕ Fz,
for some z ∈ V1, as g-modules. Note that Fz ∩ W = {0}, so V = W ⊕ Fz as vector
spaces; the question is whether this is a g-module decomposition. However because V/W1 =
(W/W1)⊕ (V1/W1), we have g.W ⊆W , so indeed W ⊕ Fz is a g-module decomposition.

Step III: The general case. Assume W ⊂ V is submodule of strictly smaller dimension,
and let V ⊂ Hom(V,W ) be the subspace of Hom(V,W ) consisting of maps that act by
constant multiplication on W . Let W ⊂ V be the subset of maps that act as multiplication
by zero on W . Moreover, W ⊂ V has codimension, as any element of V/W is determined
by its scalar action on W .

However we can prove that V andW are g-modules. Letting F ∈ V, w ∈W , and x ∈ g,
we have that F (w) = λw for some λ ∈ F and, since x.w ∈W also F (x.w) = λx.w. Thus

(x.F )(w) = x.(F (w)) − F (x.w) = x.(λw)− λ(x.w) = 0. (17)

Thus all operators in g take V to W, so in particular they are both g-modules.

By Step II above, there is a g-submodule in V complimentary to W, spanned by some
operator F1. Scaling F1 we can assume F1|W is multiplication by 1. Because F1 generates
a 1-dimensional submodules and g acts as an element of sl(1,C) ≈ {0}, we have g.F1 = 0.
Thus we have that x ∈ g, v ∈ V implies

0 = (x.F1)(v) = x.(F1(v)) − F1(x.v). (18)
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This is the same as saying F1 is a g-module homomorphism V →W . Its kernel is therefore
a g module, and, since F1 is the identity on V and maps V to W , must be complimentary
as a vector space to W . Therefore

V = W ⊕ Ker(F1) (19)

as g-modules. �
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