Lecture 7 - Complete Reducibility of Representations of Semisimple Algebras

September 27, 2012

1 New modules from old

A few preliminaries are necessary before jumping into the representation theory of semisimple algebras. First a word on creating new \mathfrak{g} -modules from old. Any Lie algebra \mathfrak{g} has an action on a 1-dimensional vector space (or \mathbb{F} itself), given by the trivial action. Second, any action on spaces V and W can be extended to an action on $V \otimes W$ by forcing the Leibnitz rule: for any basis vector $v \otimes w \in V \otimes W$ we define

$$x.(v \otimes w) = x.v \otimes w + v \otimes x.w \tag{1}$$

One easily checks that $x.y.(v \otimes w) - y.x.(v \otimes w) = [x, y].(v \otimes w)$. Assuming \mathfrak{g} has an action on V, it has an action on its dual V^* (recall V^* is the vector space of linear functionals $V \to \mathbb{F}$), given by

$$(v.f)(x) = -f(x.v) \tag{2}$$

for any functional $f: V \to \mathbb{F}$ in V^* . This is in fact a version of the "forcing the Leibnitz rule." That is, recalling that we defined x.(f(v)) = 0, we define $x.f \in V^*$ implicitly by

$$x. (f(v)) = (x.f)(v) + f(x.v).$$
(3)

For any vector spaces V, W, we have an isomorphism

$$Hom(V, W) \approx V^* \otimes W,$$
 (4)

so Hom(V, W) is a \mathfrak{g} -module whenever V and W are. This can be defined using the above rules for duals and tensor products, or, equivalently, by again forcing the Leibnitz rule: for $F \in Hom(V, W)$, we define $x.F \in Hom(V, W)$ implicitly by

$$x.(F(v)) = (x.F)(v) + F(x.v).$$
(5)

2 Schur's lemma and Casimir elements

Theorem 2.1 (Schur's Lemma) If \mathfrak{g} has an irreducible representation on $\mathfrak{gl}(V)$ and if $f \in End(V)$ commutes with every $x \in \mathfrak{g}$, then f is multiplication by a constant.

Pf. The operator f has a complete eigenspace decomposition, which is preserved by every $x \in \mathfrak{g}$. Namely if $v \in V$ belongs to the generalized eigenspace with eigenvector λ , meaning $(f - \lambda I)^k \cdot v = 0$ for some k, then

$$(f - \lambda I)^k . x. v = x. (f - \lambda I)^k . v = 0.$$

$$(6)$$

Thus the generalized λ -eigenspace is preserved by \mathfrak{g} and is therefore a sub-representation. By irreducibility, this must be all of V. Clearly then $f - \lambda I$ is a nilpotent operator on V that commutes with \mathfrak{g} . Thus $V_0 = \{v \in V \mid (f - \lambda I).v = 0\}$ is non-trivial. But V_0 is preserved by \mathfrak{g} , so must equal V. Therefore $f = \lambda I$.

Now assume V is a \mathfrak{g} -module, or specifically that a homomorphism $\varphi:\mathfrak{g}\to\mathfrak{gl}(V)$ exists. As with the adjoint representation we can establish a bilinear form $B_\varphi:\mathfrak{g}\times\mathfrak{g}\to\mathbb{F}$

$$B_{\varphi}(x, y) = Tr(\varphi(x)\varphi(y)). \tag{7}$$

If φ is the adjoint map, of course this is the Killing form. Clearly

$$B_{\varphi}([x,y],z) = B_{\varphi}(x,[y,z]) \tag{8}$$

so that the radical of B_{φ} is an ideal of \mathfrak{g} . Also, the Cartan criterion implies that the image under φ of the radical of B_{φ} is solvable.

Thus if φ is a faithful representation of a semisimple algebra, B_{φ} is non-degenerate. Letting $\{x_i\}_{i=1}^n$ be a basis for \mathfrak{g} , a (unique) dual basis $\{y_i\}_{i=1}^n$ exists, meaning the y_i satisfy

$$B_{\varphi}(x_i, y_i) = \delta_{ij}. \tag{9}$$

We define the *casimir element* c_{φ} of such a representation by

$$c_{\varphi} = \sum_{i=1}^{n} \varphi(x_i)\varphi(y_i) \in End V.$$
 (10)

Lemma 2.2 Given a faithful representation φ of a semisimple Lie algebra, the casimir element commutes with all endomorphisms in $\varphi(\mathfrak{g})$.

Pf. Let $x \in \mathfrak{g}$ be arbitrary, and define constants

$$[x, x_i] = a_{ij} x_j$$

$$[x, y_i] = b_{ij} x_j$$
(11)

We have

$$-b_{ji} = -\sum_{k=1}^{n} b_{jk} \delta_{ik} = -B_{\varphi}(x_i, [x, y_j]) = B_{\varphi}([x, x_i], y_k) = \sum_{k=1}^{n} a_{ij} \delta_{jk} = a_{ij}$$
 (12)

Therefore

$$[\varphi(x), c_{\varphi}] = \sum_{i=1}^{n} [\varphi(x), \varphi(x_{i})\varphi(y_{i})]$$

$$= \sum_{i=1}^{n} [\varphi(x), \varphi(x_{i})] \varphi(y_{i}) + \sum_{i=1}^{n} \varphi(x_{i}) [\varphi(x), \varphi(y_{i})]$$

$$= \sum_{i=1}^{n} \varphi([x, x_{i}]) \varphi(y_{i}) + \sum_{i=1}^{n} \varphi(x_{i})\varphi([x, y_{i}])$$

$$= \sum_{i,j=1}^{n} a_{ij}\varphi(x_{j}) \varphi(y_{i}) + \sum_{i,j=1}^{n} b_{ij}\varphi(x_{i})\varphi(y_{j})$$

$$= 0$$

$$(13)$$

Lemma 2.3 If $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$ is an irreducible, faithful representation of the semisimple Lie algebra \mathfrak{g} , then the Casimir endomorphism c_{φ} acts by constant multiplication, with the constant equal to $\dim(\mathfrak{g})/\dim(V)$.

Pf. That c_{φ} acts by constant multiplication by some $\lambda \in \mathbb{F}$ follows from Schur's lemma. We see that

$$Tr(c_{\varphi}) = \sum_{i=1}^{\dim(\mathfrak{g})} Tr(\varphi(x_i)\varphi(y_i)) = \sum_{i=1}^{\dim(\mathfrak{g})} B_{\varphi}(x_i, y_i) = \dim(\mathfrak{g})$$
 (14)

and also that $Tr(c_{\varphi}) = \lambda \cdot dim(V)$. Thus $\lambda = dim(\mathfrak{g})/dim(V)$.

3 Weyl's Theorem

Lemma 3.1 If $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$ is a representation and \mathfrak{g} is semisimple, then $\varphi(\mathfrak{g}) \subseteq \mathfrak{sl}(V)$.

Pf. Because
$$[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$$
, we have $[\varphi(\mathfrak{g}),\varphi(\mathfrak{g})] = \varphi([\mathfrak{g},\mathfrak{g}]) = \varphi(\mathfrak{g})$.

Theorem 3.2 (Weyl) Let $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation¹ of a semisimple Lie algebra. Then φ is completely reducible.

 $^{^{1}}$ under the usual conditions: \mathfrak{g} and V are finite dimensional, and the field is algebraically closed and of characteristic 0.

Pf. First, we can assume φ is faithful, for $Ker(\varphi)$ consists of summands on \mathfrak{g} , and we can quotient \mathfrak{g} by these summands without affecting the reducibility of the representation.

Step I: Case of an irreducible codimension 1 submodule. Assume φ is a representation of \mathfrak{g} on V, and assume $W \subset V$ is an irreducible codimension 1 submodule. The representation on V, being faithful, has a Casimir operator c_{φ} , which acts by constant multiplication on W (because W is irreducible). In fact $Tr(c_{\varphi}) = \dim(\mathfrak{g}) > 0$. Since V/W is a 1-dimensional module and since $\varphi \mathfrak{g} = [\varphi \mathfrak{g}, \varphi \mathfrak{g}]$ (by the lemma), we have that V/W is a trivial \mathfrak{g} -module, so c_{φ} also acts on V/W by multiplication by 0. All this means that $c_{\varphi}: V \to V$ has a 1-dimensional Kernel that trivially intersects W, so

$$V = W \oplus Ker(c_{\varphi}). \tag{15}$$

Since c_{φ} commutes with $\varphi(\mathfrak{g})$, we have that $Ker(c_{\varphi})$ is indeed a (trivial) \mathfrak{g} -module.

Step II: Case of a general codimension 1 irreducible submodule. Let $W \subset V$ be an arbitrary codimension 1 submodule of \mathfrak{g} . If W is not irreducible, there is another submodule $W_1 \subset W$, which we can assume to be maximal. Then W/W_1 is an irreducible submodule of V/W_1 , and still has codimension 1. Thus by step I, we have

$$V/W_1 = W/W_1 \oplus V_1/W_1,$$
 (16)

where V_1/W_1 is a 1-dimensional submodule of V/W_1 . Because $dim(W) \neq 0$, we have $dim(V_1) < dim(V)$. We also have that W_1 is a codimension 1 submodule of V_1 .

Since $dim(V_1) < dim(V)$, an induction argument lets us assert V_1 that $V_1 = W_1 \oplus \mathbb{F}z$, for some $z \in V_1$, as \mathfrak{g} -modules. Note that $\mathbb{F}z \cap W = \{0\}$, so $V = W \oplus \mathbb{F}z$ as vector spaces; the question is whether this is a \mathfrak{g} -module decomposition. However because $V/W_1 = (W/W_1) \oplus (V_1/W_1)$, we have $\mathfrak{g}.W \subseteq W$, so indeed $W \oplus \mathbb{F}z$ is a \mathfrak{g} -module decomposition.

Step III: The general case. Assume $W \subset V$ is submodule of strictly smaller dimension, and let $\mathcal{V} \subset \overline{Hom(V,W)}$ be the subspace of Hom(V,W) consisting of maps that act by constant multiplication on W. Let $\mathcal{W} \subset \mathcal{V}$ be the subset of maps that act as multiplication by zero on W. Moreover, $\mathcal{W} \subset \mathcal{V}$ has codimension, as any element of \mathcal{V}/\mathcal{W} is determined by its scalar action on W.

However we can prove that \mathcal{V} and \mathcal{W} are \mathfrak{g} -modules. Letting $F \in \mathcal{V}$, $w \in W$, and $x \in \mathfrak{g}$, we have that $F(w) = \lambda w$ for some $\lambda \in \mathbb{F}$ and, since $x.w \in W$ also $F(x.w) = \lambda x.w$. Thus

$$(x.F)(w) = x.(F(w)) - F(x.w) = x.(\lambda w) - \lambda(x.w) = 0.$$
(17)

Thus all operators in \mathfrak{g} take \mathcal{V} to \mathcal{W} , so in particular they are both \mathfrak{g} -modules.

By Step II above, there is a \mathfrak{g} -submodule in \mathcal{V} complimentary to \mathcal{W} , spanned by some operator F_1 . Scaling F_1 we can assume $F_1|_W$ is multiplication by 1. Because F_1 generates a 1-dimensional submodules and \mathfrak{g} acts as an element of $\mathfrak{sl}(1,\mathbb{C}) \approx \{0\}$, we have $\mathfrak{g}.F_1 = 0$. Thus we have that $x \in \mathfrak{g}$, $v \in V$ implies

$$0 = (x.F_1)(v) = x.(F_1(v)) - F_1(x.v).$$
(18)

This is the same as saying F_1 is a \mathfrak{g} -module homomorphism $V \to W$. Its kernel is therefore a \mathfrak{g} module, and, since F_1 is the identity on V and maps V to W, must be complimentary as a vector space to W. Therefore

$$V = W \oplus Ker(F_1) \tag{19}$$

as \mathfrak{g} -modules. \square