Lecture $14-\mathfrak{o}(4)$ and \mathfrak{g}_{2}

October 23, 2012

In this lecture we take a closer look at the orthogonal algebras.

1 Example: o(4)

1.1 Identification with an alternating algebra

Given a Riemannian metric $g(\cdot, \cdot)$ on any vector space V, there is are two a bilinear maps

$$
\begin{align*}
& G: V^{\otimes 2} \otimes V^{\otimes 2} \rightarrow \mathbb{C} \\
& H: V^{\otimes 2} \otimes V^{\otimes 2} \rightarrow V^{\otimes 2} \tag{1}
\end{align*}
$$

The "metric" G is directly inherited from the metric on V. Namely, on basis elements

$$
\begin{equation*}
G\left(e_{i} \otimes e_{j}, e_{k} \otimes e_{l}\right)=g\left(e_{i}, e_{k}\right) g\left(e_{j}, e_{l}\right) \tag{2}
\end{equation*}
$$

On $\bigwedge^{2} V$, it is conventional to divide by 2 :

$$
\begin{align*}
G\left(e_{i} \wedge e_{j}, e_{k} \wedge e_{l}\right) & =\frac{1}{2} G\left(e_{i} \otimes e_{j}-e_{j} \otimes e_{i}, e_{k} \otimes e_{l}-e_{l} \otimes e_{k}\right) \tag{3}\\
& =g\left(e_{i}, e_{k}\right) g\left(e_{j}, e_{l}\right)-g\left(e_{i}, e_{l}\right) g\left(e_{j}, e_{k}\right)
\end{align*}
$$

The second map, H is given by contraction on middle terms:

$$
\begin{equation*}
H\left(e_{i} \otimes e_{j}, e_{k} \otimes e_{l}\right)=e_{i} \otimes e_{l} \cdot g\left(e_{j}, e_{k}\right) \tag{4}
\end{equation*}
$$

This passes to $\bigwedge^{2} V$, which becomes a Lie algebra under the bracket:

$$
\begin{equation*}
\left[e_{i} \wedge e_{j}, e_{k} \wedge e_{l}\right]=H\left(e_{i} \wedge e_{j}, e_{k} \wedge e_{l}\right)-H\left(e_{k} \wedge e_{l}, e_{i} \wedge e_{j}\right) \tag{5}
\end{equation*}
$$

If $V=\operatorname{span}_{\mathbb{C}}\left\{e_{1}, \ldots, e_{n}\right\}$ is \mathbb{R}^{n}, then $\bigwedge^{2} V$, with this bracket, is isomorphic to $\mathfrak{s l}(n, \mathbb{C})$.

1.2 The 4-dimensional case

The 4-dimensional case is special, because there exists a second non-degenerate, bilinear, symmetric form. If $V=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is \mathbb{R}^{4}, then define

$$
\begin{equation*}
B: \bigwedge^{2} V \otimes \bigwedge^{2} V \rightarrow \mathbb{C} \tag{6}
\end{equation*}
$$

on homogeneous elements by

$$
\begin{equation*}
B\left(a_{i} \wedge a_{j}, a_{k} \wedge a_{l}\right)=\frac{\operatorname{Det}\left(A_{i j}\right)}{\sqrt{\left|\operatorname{Det}\left(E_{i j}\right)\right|}} \tag{7}
\end{equation*}
$$

where $A_{i j}=g\left(e_{i}, a_{j}\right)$ and $B_{i j}=g\left(e_{i}, e_{j}\right)$. One clearly sees that this definition is bilinear, symmetric, and independent of the choice of basis, as long as the change retains the orientation. If $e_{1}, e_{2}, e_{3}, e_{4}$ is an orthonormal basis, we can abuse notation and set

$$
\begin{equation*}
B\left(a_{i} \wedge a_{j}, a_{k} \wedge a_{l}\right)=\frac{a_{1} \wedge a_{2} \wedge a_{3} \wedge a_{4}}{e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}} \tag{8}
\end{equation*}
$$

It is easy to verify non-degeneracy; since $\Lambda^{2} V$ is 6-dimensional, one can check this on a basis.

Thus a unitary linear operator $*: \bigwedge^{2} V \rightarrow \bigwedge^{2} V$, known as the duality operator or Hodge star, can be defined implicitly by

$$
\begin{equation*}
B(v \wedge w, *(v \wedge w))=G(v \wedge w, v \wedge w) \tag{9}
\end{equation*}
$$

By the bilinearity of both factors, we have

$$
\begin{equation*}
* *=I d: \bigwedge^{2} V \rightarrow \bigwedge^{2} V \tag{10}
\end{equation*}
$$

Note that if $e_{1}, e_{2}, e_{3}, e_{4}$ is an ordered, orthonormal basis, then we have as usual

$$
\begin{array}{ll}
*\left(e_{1} \wedge e_{2}\right)=e_{3} \wedge e_{4} & *\left(e_{3} \wedge e_{4}\right)=e_{1} \wedge e_{2} \\
*\left(e_{1} \wedge e_{3}\right)=-e_{2} \wedge e_{4} & *\left(e_{2} \wedge e_{4}\right)=-e_{1} \wedge e_{3} \tag{11}\\
*\left(e_{1} \wedge e_{4}\right)=e_{2} \wedge e_{3} & *\left(e_{2} \wedge e_{3}\right)=e_{1} \wedge e_{4}
\end{array}
$$

We have thus established a map

$$
\begin{equation*}
*: \mathfrak{o}(4) \rightarrow \mathfrak{o}(4) \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
* *=1 \tag{13}
\end{equation*}
$$

The possible eigenvalues of $*$ are therefore ± 1. These can denoted by

$$
\begin{align*}
& \bigwedge^{+} V=\mathfrak{o}^{+}(4)=+1 \text { eigenspace of } * \tag{14}\\
& \bigwedge^{-} V=\mathfrak{o}^{-}(4)=-1 \text { eigenspace of } *
\end{align*}
$$

Further, it can be proved that

$$
\begin{equation*}
[v \wedge w, a \wedge b]=[(v \wedge w), a \wedge b] \tag{15}
\end{equation*}
$$

From this and the semi-simplicity of $\mathfrak{o}(4)$ it follows that

$$
\begin{align*}
{\left[\mathfrak{o}^{+}(4), \mathfrak{o}^{+}(4)\right] } & =\mathfrak{o}^{+}(4) \\
{\left[\mathfrak{o}^{-}(4), \mathfrak{o}^{-}(4)\right] } & =\mathfrak{o}^{-}(4) \tag{16}\\
{\left[\mathfrak{o}^{+}(4), \mathfrak{o}^{-}(4)\right] } & =\{0\} .
\end{align*}
$$

In particular $\mathfrak{o}(4)$ is not simple:

$$
\begin{equation*}
\mathfrak{o}(4)=\mathfrak{o}^{+}(4) \oplus \mathfrak{o}^{-}(4) . \tag{17}
\end{equation*}
$$

2 Example: \mathfrak{g}_{2}

There is a single Lie algebra of rank 2: $\mathfrak{s l}_{2} \approx \mathfrak{s p}_{2} \approx \mathfrak{o}_{3}$.
There are four semisimple Lie algebras of rank 2: $\mathfrak{s l}_{2} \times \mathfrak{s l}_{2} \approx \mathfrak{o}_{4}, \mathfrak{s l}_{3}, \mathfrak{s p}_{4} \approx \mathfrak{o}_{5}$, and \mathfrak{g}_{2}.
The only other simple Lie algebra that has a maximal toral subalgebra of dimension less than three is \mathfrak{g}_{2}. This Lie algebra can be defined as the Lie algebra of derivations on the purely imaginary octonions. It has the following root system:

3 Example: \mathfrak{g}_{2}

The smallest representation as a matrix group is by 7×7 matrices. We have $\mathfrak{g}_{2} \subset \mathfrak{o}(7)$. A basis for a maximal toral subalgebra can be taken to be

$$
\begin{align*}
n_{1} & =\frac{\sqrt{-3}}{12}\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right) \tag{18}\\
n_{2} & =\frac{\sqrt{-1}}{4}\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \tag{19}
\end{align*}
$$

The rest of the Lie algebra is given by the following matrices

$$
\begin{align*}
& x_{1}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & -2 & 2 i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -i & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -i \\
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & i & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & i & 0 & 0 & 0 & 0
\end{array}\right) y_{1}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & -2 & -2 i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & i & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & i \\
2 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -i & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -i & 0 & 0 & 0 & 0
\end{array}\right) \tag{20}\\
& x_{2}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -i & 0 & 0 \\
0 & i & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & i & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad y_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & i \\
-1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 \\
0 & -i & -1 & 0 \\
0 & 0 & 0 \\
0 & 1 & -i & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \tag{21}\\
& x_{3}=\left(\begin{array}{ccccccccccc}
\\
0 & 2 & 2 i & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & i & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & i \\
0 & 0 & 0 & -i & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -i & 0 & 0
\end{array}\right) \quad y_{3}=\left(\begin{array}{ccccccc}
\\
-2 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -i & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -i \\
0 & 0 & 0 & i & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & i & 0 & 0
\end{array}\right) \tag{22}
\end{align*}
$$

$$
\begin{align*}
& x_{4}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -i & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & i \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & i & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & -i & 0 & 0 & 0 & 0
\end{array}\right) y_{4}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & i & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -i \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -i & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & i & 0 & 0 & 0 & 0
\end{array}\right) \tag{23}\\
& x_{5}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & -2 i & 2 \\
0 & 0 & 0 & -1 & -i & 0 & 0 \\
0 & 0 & 0 & -i & 1 & 0 & 0 \\
0 & 1 & i & 0 & 0 & 0 & 0 \\
0 & i & -1 & 0 & 0 & 0 & 0 \\
2 i & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) y_{5}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & -2 i & 2 \\
0 & 0 & 0 & -1 & -i & 0 & 0 \\
0 & 0 & 0 & -i & 1 & 0 & 0 \\
0 & 1 & i & 0 & 0 & 0 & 0 \\
0 & i & -1 & 0 & 0 & 0 & 0 \\
2 i & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \tag{24}\\
& x_{6}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -i & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & i \\
0 & 0 & 0 & i & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & -i & 0 & 0
\end{array}\right) \quad y_{6}=\left(\begin{array}{cccccccc}
\\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & i & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -i \\
0 & 0 & 0 & -i & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & i & 0 & 0
\end{array}\right) \tag{25}
\end{align*}
$$

The matrices representing the adjoints of n_{1} and n_{2} are diagonal, and we have

$$
\begin{align*}
& a d n_{1}=\operatorname{diag}\left(0,0, \frac{\sqrt{3}}{6},-\frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{4},-\frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{12},-\frac{\sqrt{3}}{12}, 0,0,-\frac{\sqrt{3}}{12}, \frac{\sqrt{3}}{12},-\frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{4}\right) \tag{26}\\
& \operatorname{ad} n_{2}=\operatorname{diag}\left(0,0,0,0, \frac{1}{4},-\frac{1}{4}, \frac{1}{4},-\frac{1}{4}, \frac{1}{2},-\frac{1}{2}, \frac{1}{4},-\frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right)
\end{align*}
$$

in the $n_{1}, n_{2}, x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{4}, y_{4}, x_{5}, y_{5}, x_{6}, y_{6}$ ordered basis. The roots are therefore

$$
\begin{align*}
& \alpha_{1}=\left(\frac{\sqrt{3}}{6}, 0\right) \\
& \alpha_{2}=\left(\frac{\sqrt{3}}{4}, \frac{1}{4}\right) \\
& \alpha_{3}=\left(\frac{\sqrt{3}}{12}, \frac{1}{4}\right) \tag{27}\\
& \alpha_{4}=\left(0, \frac{1}{2}\right) \\
& \alpha_{5}=\left(-\frac{\sqrt{3}}{12}, \frac{1}{4}\right) \\
& \alpha_{6}=\left(-\frac{\sqrt{3}}{4}, \frac{1}{4}\right)
\end{align*}
$$

and their negatives. Root lengths are therefore of length $\frac{1}{2}$ and $\frac{\sqrt{3}}{6}$.

