
Lecture 14 - o(4) and g2

October 23, 2012

In this lecture we take a closer look at the orthogonal algebras.

1 Example: o(4)

1.1 Identification with an alternating algebra

Given a Riemannian metric g(·, ·) on any vector space V , there is are two a bilinear maps

G : V ⊗2 ⊗ V ⊗2 → C
H : V ⊗2 ⊗ V ⊗2 → V ⊗2.

(1)

The “metric” G is directly inherited from the metric on V . Namely, on basis elements

G(ei ⊗ ej , ek ⊗ el) = g(ei, ek) g(ej , el) (2)

On
∧2

V , it is conventional to divide by 2:

G(ei ∧ ej , ek ∧ el) =
1

2
G(ei ⊗ ej − ej ⊗ ei, ek ⊗ el − el ⊗ ek)

= g(ei, ek)g(ej , el) − g(ei, el)g(ej , ek).
(3)

The second map, H is given by contraction on middle terms:

H (ei ⊗ ej , ek ⊗ el) = ei ⊗ el · g (ej , ek) . (4)

This passes to
∧2

V , which becomes a Lie algebra under the bracket:

[ei ∧ ej , ek ∧ el] = H(ei ∧ ej , ek ∧ el) − H(ek ∧ el, ei ∧ ej). (5)

If V = spanC {e1, . . . , en} is Rn, then
∧2

V , with this bracket, is isomorphic to sl(n,C).
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1.2 The 4-dimensional case

The 4-dimensional case is special, because there exists a second non-degenerate, bilinear,
symmetric form. If V = {e1, e2, e3, e4} is R4, then define

B :
∧2

V ⊗
∧2

V → C (6)

on homogeneous elements by

B(ai ∧ aj , ak ∧ al) =
Det(Aij)√
|Det(Eij)|

(7)

where Aij = g(ei, aj) and Bij = g(ei, ej). One clearly sees that this definition is bilin-
ear, symmetric, and independent of the choice of basis, as long as the change retains the
orientation. If e1, e2, e3, e4 is an orthonormal basis, we can abuse notation and set

B(ai ∧ aj , ak ∧ al) =
a1 ∧ a2 ∧ a3 ∧ a4
e1 ∧ e2 ∧ e3 ∧ e4

. (8)

It is easy to verify non-degeneracy; since
∧2

V is 6-dimensional, one can check this on a
basis.

Thus a unitary linear operator ∗ :
∧2

V →
∧2

V , known as the duality operator or
Hodge star, can be defined implicitly by

B ( v ∧ w, ∗(v ∧ w) ) = G( v ∧ w , v ∧ w ). (9)

By the bilinearity of both factors, we have

∗ ∗ = Id :
∧2

V →
∧2

V. (10)

Note that if e1, e2, e3, e4 is an ordered, orthonormal basis, then we have as usual

∗(e1 ∧ e2) = e3 ∧ e4 ∗(e3 ∧ e4) = e1 ∧ e2
∗(e1 ∧ e3) = − e2 ∧ e4 ∗(e2 ∧ e4) = −e1 ∧ e3
∗(e1 ∧ e4) = e2 ∧ e3 ∗(e2 ∧ e3) = e1 ∧ e4.

(11)

We have thus established a map

∗ : o(4) → o(4) (12)

with

∗ ∗ = 1. (13)

The possible eigenvalues of ∗ are therefore ±1. These can denoted by∧+
V = o+(4) = +1 eigenspace of ∗∧−
V = 0−(4) = −1 eigenspace of ∗

(14)
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Further, it can be proved that

∗ [v ∧ w, a ∧ b] = [∗(v ∧ w), a ∧ b]. (15)

From this and the semi-simplicity of o(4) it follows that[
o+(4), o+(4)

]
= o+(4)[

o−(4), o−(4)
]

= o−(4)[
o+(4), o−(4)

]
= {0}.

(16)

In particular o(4) is not simple:

o(4) = o+(4) ⊕ o−(4). (17)

2 Example: g2

There is a single Lie algebra of rank 2: sl2 ≈ sp2 ≈ o3.

There are four semisimple Lie algebras of rank 2: sl2 × sl2 ≈ o4, sl3, sp4 ≈ o5, and g2.

The only other simple Lie algebra that has a maximal toral subalgebra of dimension
less than three is g2. This Lie algebra can be defined as the Lie algebra of derivations on
the purely imaginary octonions. It has the following root system:
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3 Example: g2

The smallest representation as a matrix group is by 7× 7 matrices. We have g2 ⊂ o(7). A
basis for a maximal toral subalgebra can be taken to be

n1 =

√
−3
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0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 2 0 0
0 0 0 −2 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 0


(18)

n2 =

√
−1
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0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0


(19)

The rest of the Lie algebra is given by the following matrices

x1 =



0 0 0 −2 2i 0 0
0 0 0 0 0 −i −1
0 0 0 0 0 1 −i
2 0 0 0 0 0 0
−2i 0 0 0 0 0 0

0 i −1 0 0 0 0
0 1 i 0 0 0 0


y1 =



0 0 0 −2 −2i 0 0
0 0 0 0 0 i −1
0 0 0 0 0 1 i
2 0 0 0 0 0 0
2i 0 0 0 0 0 0
0 −i −1 0 0 0 0
0 1 −i 0 0 0 0


(20)

x2 =



0 0 0 0 0 0 0
0 0 0 −i −1 0 0
0 0 0 1 −i 0 0
0 i −1 0 0 0 0
0 1 i 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


y2 =



0 0 0 0 0 0 0
0 0 0 i −1 0 0
0 0 0 1 i 0 0
0 −i −1 0 0 0 0
0 1 −i 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(21)

x3 =



0 2 2i 0 0 0 0
−2 0 0 0 0 0 0
−2i 0 0 0 0 0 0

0 0 0 0 0 i −1
0 0 0 0 0 1 i
0 0 0 −i −1 0 0
0 0 0 1 −i 0 0


y3 =



0 2 −2i 0 0 0 0
−2 0 0 0 0 0 0
2i 0 0 0 0 0 0
0 0 0 0 0 −i −1
0 0 0 0 0 1 −i
0 0 0 i −1 0 0
0 0 0 1 i 0 0


(22)
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x4 =



0 0 0 0 0 0 0
0 0 0 0 0 −i 1
0 0 0 0 0 1 i
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 i −1 0 0 0 0
0 −1 −i 0 0 0 0


y4 =



0 0 0 0 0 0 0
0 0 0 0 0 i 1
0 0 0 0 0 1 −i
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −i −1 0 0 0 0
0 −1 i 0 0 0 0


(23)

x5 =



0 0 0 0 0 −2i 2
0 0 0 −1 −i 0 0
0 0 0 −i 1 0 0
0 1 i 0 0 0 0
0 i −1 0 0 0 0
2i 0 0 0 0 0 0
−2 0 0 0 0 0 0


y5 =



0 0 0 0 0 −2i 2
0 0 0 −1 −i 0 0
0 0 0 −i 1 0 0
0 1 i 0 0 0 0
0 i −1 0 0 0 0
2i 0 0 0 0 0 0
−2 0 0 0 0 0 0


(24)

x6 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −i 1
0 0 0 0 0 1 i
0 0 0 i −1 0 0
0 0 0 −1 −i 0 0


y6 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 i 1
0 0 0 0 0 1 −i
0 0 0 −i −1 0 0
0 0 0 −1 i 0 0


(25)

The matrices representing the adjoints of n1 and n2 are diagonal, and we have

adn1 = diag

(
0, 0,

√
3

6
,−
√

3

6
,

√
3

4
,−
√

3

4
,

√
3

12
,−
√

3

12
, 0, 0,−

√
3

12
,

√
3

12
,−
√

3

4
,

√
3

4

)

adn2 = diag

(
0, 0, 0, 0,

1

4
,−1

4
,

1

4
,−1

4
,

1

2
,−1

2
,

1

4
,−1

4
,

1

4
,−1

4

) (26)
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in the n1, n2, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6 ordered basis. The roots are therefore

α1 =

(√
3

6
, 0

)

α2 =

(√
3

4
,

1

4

)

α3 =

(√
3

12
,

1

4

)

α4 =

(
0,

1

2

)
α5 =

(
−
√

3

12
,

1

4

)

α6 =

(
−
√

3

4
,

1

4

)

(27)

and their negatives. Root lengths are therefore of length 1
2 and

√
3
6 .
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