Lecture 13 - Root Space Decomposition II

October 18, 2012

1 Review

First let us recall the situation. Let \mathfrak{g} be a simple algebra, with maximal toral subalgebra \mathfrak{h} (which we are calling a CSA, or Cartan Subalgebra). We have that \mathfrak{h} acts on \mathfrak{g} via the adjoint action, and since \mathfrak{h} has only mutually commuting, abstractly semisimple elements, we have that the action of \mathfrak{h} is simultaneously diagonalizable. Thus \mathfrak{g} decomposes into weight spaces, called in this special case root spaces:

$$
\begin{align*}
\mathfrak{g} & =\bigoplus_{\alpha \in \Phi \cup\{0\}} \mathfrak{g}_{\alpha} \tag{1}\\
\mathfrak{g}_{\alpha} & =\{x \in \mathfrak{g} \mid h \cdot x=\alpha(h) x \text { for all } h \in \mathfrak{h}\} .
\end{align*}
$$

We defined Φ to be the set of roots of \mathfrak{g} relative to the choice of \mathfrak{h}, or in other words, the non-zero weights for the adjoint action of \mathfrak{h} on \mathfrak{g}. We proved:
i) $\mathfrak{h}=C_{\mathfrak{g}}(\mathfrak{h})=\mathfrak{g}_{0}$
ii) Φ spans \mathfrak{h}^{*}
iii) $\alpha \in \Phi$ implies $-\alpha \in \Phi$
iv) $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \in \mathfrak{g}_{\alpha+\beta}$
v) $x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}$ implies $\left[x_{\alpha}, y_{\alpha}\right]=\kappa_{\mathfrak{g}}\left(x_{\alpha}, y_{\alpha}\right) t_{\alpha}$ (where t_{α} is the $\kappa_{\mathfrak{g}}$-dual of α)
vi) $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]=\mathbb{F} t_{\alpha} \subseteq \mathfrak{h}$
vii) If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ then $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ exists so $\left\{x_{\alpha}, y_{\alpha}, h_{\alpha}\right\}$ is a standard basis for some $\mathfrak{s l}(2, \mathbb{C}) \subseteq \mathfrak{g}$
viii) $h_{\alpha}=\frac{2 t_{\alpha}}{\kappa\left(t_{\alpha}, t_{\alpha}\right)}$ and $h_{\alpha}=-h_{-\alpha}$
ix) $\left.\kappa_{\mathfrak{g}}\right|_{\mathfrak{h}}$ is positive definite.

Since κ is nondegenerate, we can define an inner product on the dual space \mathfrak{h}^{*} directly by

$$
\begin{equation*}
(\alpha, \beta)=\kappa\left(t_{\alpha}, t_{\beta}\right) \tag{2}
\end{equation*}
$$

where, recall, t_{α} (resp. t_{β}) is the dual of α under κ.

Lemma 1.1 Assume α and β are roots, and that $\alpha+c \beta$ are all roots where $c \in \mathbb{C}$. Then

- The number $\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$ is an integer
- c is an integer
- The direct sum of root spaces of the form $\mathfrak{g}_{\beta+i \alpha}$ is an irreducible S_{α} module. In particular if $x_{\alpha} \in \mathfrak{g}$, we have that $\left(\text { ad } x_{\alpha}\right)^{i}: \mathfrak{g}_{\alpha} \rightarrow \mathfrak{g}_{\alpha+i \beta}$ is an isomorphism.
$P f$. The vector space

$$
\begin{equation*}
T=\bigoplus \mathfrak{g}_{\beta+c \alpha} \tag{3}
\end{equation*}
$$

where c ranges over all numbers in \mathbb{C} so $\beta+c \alpha \in \Phi$, is a finite dimensional S_{α}-module, and each $\mathfrak{g}_{\beta+i \alpha}$ is 1-dimensional. The weight (in the $\mathfrak{s l}_{2}$-sense) of the space $\mathfrak{g}_{\beta+c \alpha}$ is computed by selecting some $x \in \mathfrak{g}_{\alpha+c \beta}$ and computing $\left(a d h_{\alpha}\right) x$. We have

$$
\begin{equation*}
\left(a d h_{\alpha}\right) x=(\beta+c \alpha)\left(h_{\alpha}\right) x=\left(\frac{2(\alpha, \beta)}{(\alpha, \alpha)}+2 c\right) x \tag{4}
\end{equation*}
$$

Since weights must be integers, we can take $c=0$ to obtain the integrality of $\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$. Then we also have that $2 c \in \mathbb{Z}$.

Now we rule out c being half-integral. Assume $c=\frac{n}{2}$ (n odd). We can always choose n so $\mathfrak{g}_{\beta+\frac{n}{2} \alpha}$ has weight 0 or else weight 1 (with respect to the weight operator h_{α}). We have

$$
\begin{equation*}
h_{\alpha} \cdot x_{\beta+\frac{n}{2} \alpha}=\left(\frac{2(\alpha, \beta)}{(\alpha, \alpha)}+n\right) x_{\beta+\frac{n}{2} \alpha} \tag{5}
\end{equation*}
$$

so $\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$ is $-n$ or $1-n$.
Case I: Assume the S_{α}-weight of $\mathfrak{g}_{\beta+\frac{n}{2} \alpha}$ is 0 , so $\frac{2(\alpha, \beta)}{(\alpha, \alpha)}=-n$.
Consider the action of $S_{\beta+\frac{1}{2} \alpha} \approx \mathfrak{s l}_{2}$. We have

$$
\begin{equation*}
h_{\beta+\frac{n}{2} \alpha} \cdot x_{\beta}=\beta\left(h_{\beta+\frac{n}{2} \alpha}\right) x_{\alpha}=\frac{2(\beta, \beta)+n(\alpha, \beta)}{(\beta, \beta)+n(\alpha, \beta)+\frac{n^{2}}{4}(\alpha, \alpha)} x_{\alpha} \tag{6}
\end{equation*}
$$

so with $(\alpha, \alpha)=-\frac{2}{n}(\alpha, \beta)$ we have

$$
\begin{equation*}
h_{\beta+\frac{1}{2} \alpha} \cdot x_{\beta}=2 x_{\alpha} \tag{7}
\end{equation*}
$$

Therefore $\left(a d y_{\beta+\frac{n}{2} \alpha}\right)\left(x_{\beta}\right)$ is non-zero, and lies in $\mathfrak{g}_{-\frac{n}{2} \alpha}$. This is impossible because $-\frac{n}{2} \alpha$ is not a root.

First note that since n is odd, the right side is even so that $\frac{\alpha \cdot \beta}{\alpha \cdot \alpha}$ is an integer. Applying a destruction operator, we get that $\mathfrak{g}_{\beta+\frac{n-2}{2} \alpha}$ is also a non-trivial weight space. Since β is a

$$
\begin{align*}
h_{\beta \cdot x_{\beta+\frac{n}{2} \alpha}} & =\left(\beta+\frac{n}{2} \alpha\right) \cdot \frac{2 \beta}{\beta \cdot \beta} x_{\beta+\frac{n}{2} \alpha} \\
& =2\left(1+\frac{n}{2} \frac{\alpha \cdot \beta}{\beta \cdot \beta}\right) x_{\beta+\frac{n}{2} \alpha} . \tag{8}
\end{align*}
$$

Since $2+n \frac{\alpha \cdot \beta}{\beta \cdot \beta}$ is an integer, n is odd, and $2 \frac{\alpha \cdot \beta}{\beta \cdot \beta}$ is an integer, we have that $\frac{\alpha \cdot \beta}{\beta \cdot \beta}$ is an integer. Now we cheat a bit and use the theorem below, which states that κ is positive definite (note that this is not cyclical: that result does not use this one). By Cauchy-Schwarz we have

$$
\begin{equation*}
\frac{(\alpha \cdot \beta)^{2}}{(\alpha \cdot \alpha)(\beta \cdot \beta)} \leq 1 \tag{9}
\end{equation*}
$$

so either $\alpha \cdot \beta=0$, or α and β are parallel. We assumed they are not parallel, so $\alpha \cdot \beta=0$, meaning the calculation above gives

$$
\begin{equation*}
h_{\beta} \cdot x_{\beta+\frac{n}{2} \alpha}=2 x_{\beta+\frac{n}{2} \alpha} . \tag{10}
\end{equation*}
$$

Therefore we can apply a destruction operator (namely y_{β}) to obtain a non-trivial weight space, namely $g_{\frac{n}{2} \alpha}$. Yet this is impossible because $\frac{n}{2} \neq \pm 1$.

The lemma's final assertion is a direct consequence of the fact that $\beta+i \alpha$ is a root only when $i \in \mathbb{Z}$ and that each root space is 1-dimensional.

The numbers $\frac{2(\beta, \alpha)}{(\alpha, \alpha)}$ are called the Cartan integers. The set of roots of the form $\beta+i \alpha$ is called the α-string through β.

Proposition 1.2 Assume $\alpha, \beta \in \Phi$ and $\beta \neq \pm \alpha$ Then
a) The S_{α}-weight of \mathfrak{g}_{β} is $\frac{2(\beta, \alpha)}{(\alpha, \alpha)}$.
b) If β is a maximal weight for S_{α}, then the S_{α} module generated by \mathfrak{g}_{β} is

$$
\begin{equation*}
\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{\beta-\alpha} \oplus \cdots \oplus \mathfrak{g}_{\beta-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha} \tag{11}
\end{equation*}
$$

c) If α, β are any roots, then $\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha \in \mathfrak{h}^{*}$ is a root.

Pf. For (a), we compute

$$
\begin{equation*}
\left(a d h_{\alpha}\right)\left(x_{\beta}\right)=\beta\left(h_{\alpha}\right) x_{\beta}=\left(t_{\beta}, \frac{2 t_{\alpha}}{(\alpha, \alpha)}\right) x_{\beta}=\frac{2(\alpha, \beta)}{(\alpha, \alpha)} x_{\beta} . \tag{12}
\end{equation*}
$$

For $(b),(c)$, let β be a root. The weight of the (possibly trivial) root space $g_{\beta-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha}$ is

$$
\begin{equation*}
\left(\beta-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha\right)\left(h_{\alpha}\right)=\beta\left(h_{\alpha}\right)-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha\left(h_{\alpha}\right)=-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \tag{13}
\end{equation*}
$$

which is the negative of the weight of the root space of \mathfrak{g}_{β}. Since the negative of a weight is a weight, we have that $\mathfrak{g}_{\beta-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha}$ must be non-trivial.

2 The Euclidean space E and its inner product κ

Lemma 2.1 If $\beta, \gamma \in \mathfrak{h}^{*}$ then $(\beta, \gamma)=\sum_{\alpha \in \Phi}(\alpha, \beta)(\alpha, \gamma)$.

Pf. If $\Phi=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ then the decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha_{i} \in \Phi} \mathfrak{g}_{\alpha_{i}} \tag{14}
\end{equation*}
$$

diagonalizes the adjoint action of all elements of \mathfrak{h}. In fact if $h \in \mathfrak{h}$ then

$$
a d h=\left(\begin{array}{cccccc}
0 & & & & & \tag{15}\\
& \ddots & & & & \\
& & 0 & & & \\
& & & \alpha_{1}(h) & & \\
& & & & \ddots & \\
& & & & & \alpha_{m}(h)
\end{array}\right)
$$

Thus

$$
\begin{align*}
(\beta, \gamma) & =\kappa\left(t_{\beta}, t_{\gamma}\right) \\
& =\operatorname{Tr} \operatorname{adt} t_{\beta} a d t_{\gamma} \\
& =\sum_{i=1}^{m} \alpha_{i}\left(t_{\beta}\right) \alpha_{i}\left(t_{\gamma}\right) \tag{16}\\
& =\sum_{i=1}^{m}\left(\beta, \alpha_{i}\right)\left(\gamma, \alpha_{i}\right) .
\end{align*}
$$

Lemma 2.2 Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq \Phi$ be a \mathbb{C}-basis of \mathfrak{h}^{*}. Then $\Phi \subset \operatorname{span}_{\mathbb{Q}}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$.

Pf. We have $\beta=\sum_{i=1}^{n} c_{i} \alpha_{i}$ for some constants $c_{i} \in \mathbb{C}$. Then $\left(\beta, \alpha_{j}\right)=\sum_{i} c_{i} A_{i j}$ where $A_{i j}=\left(\alpha_{i}, \alpha_{j}\right)$. Note that $A_{i j}$ is invertible. Then

$$
\begin{equation*}
\frac{2\left(\beta, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}=\sum_{i=1}^{n} c_{i} \frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)} \tag{17}
\end{equation*}
$$

Since $M_{i j}=A_{i j}\left(\alpha_{j}, \alpha_{j}\right)^{-1}$ is invertible and all numbers besides the c_{i} are integers, the c_{i} are rationals.

Lemma 2.3 If $\beta, \gamma \in \Phi$, then (β, γ) is rational, and $(\beta, \beta)>0$.

Pf. We have $(\beta, \beta)=\sum_{\alpha \in \Phi}(\alpha, \beta)^{2}$ so that

$$
\begin{equation*}
\frac{4}{(\beta, \beta)}=\sum_{i=1}^{m}\left(\frac{2(\alpha, \beta)}{(\beta, \beta)}\right)^{2} \tag{18}
\end{equation*}
$$

The numbers on the right are all integers, so (β, β) is rational. Now letting $\gamma \in \Phi$ we have

$$
\begin{align*}
(\beta, \gamma) & =\sum_{\alpha \in \Phi}(\alpha, \beta)(\alpha, \gamma) \\
\frac{4(\beta, \gamma)}{(\beta, \beta)(\gamma, \gamma)} & =\sum_{\alpha \in \Phi} \frac{2(\alpha, \beta)}{(\beta, \beta)} \frac{2(\alpha, \gamma)}{(\gamma, \gamma)} \tag{19}
\end{align*}
$$

where the right-hand side is integral, and (β, β) and (γ, γ) are rational. Therefore (β, γ) is rational. Finally with $(\beta, \beta)=\sum_{\alpha \in \Phi}(\alpha, \beta)^{2}$ again, we see that (β, β) is the sum of nonnegative rationals. Thus κ is positive semi-definite. Since it is non-degenerate, it is therefore positive definite and $(\beta, \beta)>0$.

Theorem 2.4 Setting $E=\operatorname{span}_{\mathbb{R}} \Phi$ and restricting κ to E, we have that $\operatorname{dim}_{\mathbb{R}} E=\operatorname{dim}_{\mathbb{C}} \mathfrak{h}$ and κ is positive definite inner product.

Pf. Trivlal.

3 Root Space Axioms

It is useful to put some of our conclusions into one place; the theorem that follows verifies what we will call the root space axioms.

Theorem 3.1 Let \mathfrak{g} be a semisimple Lie algebra, \mathfrak{h} any maximal toral subalgebra, Φ the set of roots associated to \mathfrak{h}, and $E=\operatorname{span}_{\mathbb{R}} \Phi$ with positive definite inner product κ. Then
a) Φ spans E, and $0 \notin \Phi$
b) If $\alpha \in \Phi$ then $-\alpha \in \Phi$, but $c \alpha \notin \Phi$ for $c \neq \pm 1$
c) If $\alpha, \beta \in \Phi$, then $\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha \in \Phi$
d) If $\alpha, \beta \in \Phi$ then $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$

