
Lecture 13 - Root Space Decomposition II

October 18, 2012

1 Review

First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra
h (which we are calling a CSA, or Cartan Subalgebra). We have that h acts on g via the
adjoint action, and since h has only mutually commuting, abstractly semisimple elements,
we have that the action of h is simultaneously diagonalizable. Thus g decomposes into
weight spaces, called in this special case root spaces:

g =
⊕

α∈Φ∪{0}

gα

gα = {x ∈ g | h.x = α(h)x for all h ∈ h } .
(1)

We defined Φ to be the set of roots of g relative to the choice of h, or in other words, the
non-zero weights for the adjoint action of h on g. We proved:

i) h = Cg(h) = g0

ii) Φ spans h∗

iii) α ∈ Φ implies −α ∈ Φ

iv) [gα, gβ ] ∈ gα+β

v) xα ∈ gα, yα ∈ g−α implies [xα, yα] = κg(xα, yα)tα (where tα is the κg-dual of α)

vi) [gα, g−α] = F tα ⊆ h

vii) If xα ∈ gα then yα ∈ g−α exists so {xα, yα, hα} is a standard basis for some sl(2,C) ⊆ g

viii) hα = 2tα
κ(tα,tα) and hα = −h−α

ix) κg|h is positive definite.
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Since κ is nondegenerate, we can define an inner product on the dual space h∗ directly by

(α, β) = κ(tα, tβ) (2)

where, recall, tα (resp. tβ) is the dual of α under κ.

Lemma 1.1 Assume α and β are roots, and that α+ cβ are all roots where c ∈ C. Then

• The number 2(α,β)
(α,α) is an integer

• c is an integer

• The direct sum of root spaces of the form gβ+iα is an irreducible Sα module. In
particular if xα ∈ g, we have that (ad xα)i : gα → gα+iβ is an isomorphism.

Pf. The vector space

T =
⊕

gβ+cα (3)

where c ranges over all numbers in C so β + cα ∈ Φ, is a finite dimensional Sα-module, and
each gβ+iα is 1-dimensional. The weight (in the sl2-sense) of the space gβ+cα is computed
by selecting some x ∈ gα+cβ and computing (ad hα)x. We have

(ad hα)x = (β + cα)(hα)x =

(
2 (α, β)

(α, α)
+ 2c

)
x (4)

Since weights must be integers, we can take c = 0 to obtain the integrality of 2(α,β)
(α,α) . Then

we also have that 2c ∈ Z.

Now we rule out c being half-integral. Assume c = n
2 (n odd). We can always choose n

so gβ+n
2 α

has weight 0 or else weight 1 (with respect to the weight operator hα). We have

hα.xβ+n
2 α

=

(
2(α, β)

(α, α)
+ n

)
xβ+n

2 α
(5)

so 2(α,β)
(α,α) is −n or 1− n.

Case I: Assume the Sα-weight of gβ+n
2 α

is 0, so 2(α,β)
(α,α) = −n.

Consider the action of Sβ+ 1
2α
≈ sl2. We have

hβ+n
2 α
.xβ = β(hβ+n

2 α
)xα =

2(β, β) + n(α, β)

(β, β) + n(α, β) + n2

4 (α, α)
xα (6)

so with (α, α) = − 2
n (α, β) we have

hβ+ 1
2α
.xβ = 2xα (7)
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Therefore (ad yβ+n
2 α

)(xβ) is non-zero, and lies in g−n2 α. This is impossible because −n2α is
not a root.

Case II: Assume the Sα-weight of gβ+n
2 α

is 1, so 2(α,β)
(α,α) = 1− n.

First note that since n is odd, the right side is even so that α·β
α·α is an integer. Applying a

destruction operator, we get that gβ+n−2
2 α is also a non-trivial weight space. Since β is a

root, we have the algebra Sβ , and we can find the Sβ-weights of gβ+n
2 α

, gβ+n−2
2 α as follows:

hβ .xβ+n
2 α

=
(
β +

n

2
α
)
· 2β

β · β
xβ+n

2 α

= 2

(
1 +

n

2

α · β
β · β

)
xβ+n

2 α
.

(8)

Since 2 +nα·ββ·β is an integer, n is odd, and 2α·ββ·β is an integer, we have that α·β
β·β is an integer.

Now we cheat a bit and use the theorem below, which states that κ is positive definite (note
that this is not cyclical: that result does not use this one). By Cauchy-Schwarz we have

(α · β)2

(α · α)(β · β)
≤ 1 (9)

so either α · β = 0, or α and β are parallel. We assumed they are not parallel, so α · β = 0,
meaning the calculation above gives

hβ .xβ+n
2 α

= 2xβ+n
2 α
. (10)

Therefore we can apply a destruction operator (namely yβ) to obtain a non-trivial weight
space, namely gn

2 α
. Yet this is impossible because n

2 6= ±1.

The lemma’s final assertion is a direct consequence of the fact that β + iα is a root
only when i ∈ Z and that each root space is 1-dimensional. �

The numbers 2(β, α)
(α,α) are called the Cartan integers. The set of roots of the form β+ iα

is called the α-string through β.

Proposition 1.2 Assume α, β ∈ Φ and β 6= ±α Then

a) The Sα-weight of gβ is 2(β,α)
(α,α) .

b) If β is a maximal weight for Sα, then the Sα module generated by gβ is

gβ ⊕ gβ−α ⊕ · · · ⊕ g
β− 2(α,β)

(α,α)
α

(11)

c) If α, β are any roots, then β − 2(β, α)
(α, α) α ∈ h∗ is a root.
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Pf. For (a), we compute

(ad hα)(xβ) = β(hα)xβ =

(
tβ ,

2 tα
(α, α)

)
xβ =

2(α, β)

(α, α)
xβ . (12)

For (b), (c), let β be a root. The weight of the (possibly trivial) root space g
β− 2(α,β)

(α,α)
α

is

(
β − 2(α, β)

(α, α)
α

)
(hα) = β(hα) − 2(α, β)

(α, α)
α(hα) = −2(α, β)

(α, α)
(13)

which is the negative of the weight of the root space of gβ . Since the negative of a weight
is a weight, we have that g

β− 2(α,β)
(α,α)

α
must be non-trivial. �

2 The Euclidean space E and its inner product κ

Lemma 2.1 If β, γ ∈ h∗ then (β, γ) =
∑
α∈Φ(α, β)(α, γ).

Pf. If Φ = {α1, . . . , αm} then the decomposition

g = h ⊕
⊕
αi∈Φ

gαi (14)

diagonalizes the adjoint action of all elements of h. In fact if h ∈ h then

ad h =



0
. . .

0
α1(h)

. . .

αm(h)


(15)

Thus

(β, γ) = κ(tβ , tγ)

= Tr ad tβ ad tγ

=

m∑
i=1

αi(tβ)αi(tγ)

=

m∑
i=1

(β, αi) (γ, αi) .

(16)

�
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Lemma 2.2 Let {α1, . . . , αn} ⊆ Φ be a C-basis of h∗. Then Φ ⊂ spanQ{α1, . . . , αn}.

Pf. We have β =
∑n
i=1 ciαi for some constants ci ∈ C. Then (β, αj) =

∑
i ciAij where

Aij = (αi, αj). Note that Aij is invertible. Then

2(β, αj)

(αj , αj)
=

n∑
i=1

ci
2(αi, αj)

(αj , αj)
(17)

Since Mij = Aij(αj , αj)
−1 is invertible and all numbers besides the ci are integers, the ci

are rationals. �

Lemma 2.3 If β, γ ∈ Φ, then (β, γ) is rational, and (β, β) > 0.

Pf. We have (β, β) =
∑
α∈Φ(α, β)2 so that

4

(β, β)
=

m∑
i=1

(
2(α, β)

(β, β)

)2

. (18)

The numbers on the right are all integers, so (β, β) is rational. Now letting γ ∈ Φ we have

(β, γ) =
∑
α∈Φ

(α, β)(α, γ)

4(β, γ)

(β, β)(γ, γ)
=
∑
α∈Φ

2(α, β)

(β, β)

2(α, γ)

(γ, γ)

(19)

where the right-hand side is integral, and (β, β) and (γ, γ) are rational. Therefore (β, γ) is
rational. Finally with (β, β) =

∑
α∈Φ(α, β)2 again, we see that (β, β) is the sum of non-

negative rationals. Thus κ is positive semi-definite. Since it is non-degenerate, it is therefore
positive definite and (β, β) > 0. �

Theorem 2.4 Setting E = spanRΦ and restricting κ to E, we have that dimRE = dimCh
and κ is positive definite inner product.

Pf. Trivlal. �

3 Root Space Axioms

It is useful to put some of our conclusions into one place; the theorem that follows verifies
what we will call the root space axioms.
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Theorem 3.1 Let g be a semisimple Lie algebra, h any maximal toral subalgebra, Φ the set
of roots associated to h, and E = spanRΦ with positive definite inner product κ. Then

a) Φ spans E, and 0 6∈ Φ

b) If α ∈ Φ then −α ∈ Φ, but cα 6∈ Φ for c 6= ±1

c) If α, β ∈ Φ, then β − 2(β, α)
(α, α) α ∈ Φ

d) If α, β ∈ Φ then 2(β, α)
(α, α) ∈ Z

�
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