Lecture 13 - Root Space Decomposition II

October 18, 2012

1 Review

First let us recall the situation. Let \mathfrak{g} be a simple algebra, with maximal toral subalgebra \mathfrak{h} (which we are calling a CSA, or Cartan Subalgebra). We have that \mathfrak{h} acts on \mathfrak{g} via the adjoint action, and since \mathfrak{h} has only mutually commuting, abstractly semisimple elements, we have that the action of \mathfrak{h} is simultaneously diagonalizable. Thus \mathfrak{g} decomposes into weight spaces, called in this special case *root spaces*:

$$\mathfrak{g} = \bigoplus_{\alpha \in \Phi \cup \{0\}} \mathfrak{g}_{\alpha}$$

$$\mathfrak{g}_{\alpha} = \left\{ x \in \mathfrak{g} \mid h.x = \alpha(h) x \text{ for all } h \in \mathfrak{h} \right\}.$$
(1)

We defined Φ to be the set of roots of \mathfrak{g} relative to the choice of \mathfrak{h} , or in other words, the non-zero weights for the adjoint action of \mathfrak{h} on \mathfrak{g} . We proved:

- i) $\mathfrak{h} = C_{\mathfrak{g}}(\mathfrak{h}) = \mathfrak{g}_0$
- *ii*) Φ spans \mathfrak{h}^*
- *iii*) $\alpha \in \Phi$ implies $-\alpha \in \Phi$
- *iv*) $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \in \mathfrak{g}_{\alpha+\beta}$
- v) $x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}$ implies $[x_{\alpha}, y_{\alpha}] = \kappa_{\mathfrak{g}}(x_{\alpha}, y_{\alpha})t_{\alpha}$ (where t_{α} is the $\kappa_{\mathfrak{g}}$ -dual of α)
- *vi*) $[\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}] = \mathbb{F} t_{\alpha} \subseteq \mathfrak{h}$
- *vii*) If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ then $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ exists so $\{x_{\alpha}, y_{\alpha}, h_{\alpha}\}$ is a standard basis for some $\mathfrak{sl}(2, \mathbb{C}) \subseteq \mathfrak{g}$
- *viii*) $h_{\alpha} = \frac{2t_{\alpha}}{\kappa(t_{\alpha}, t_{\alpha})}$ and $h_{\alpha} = -h_{-\alpha}$
- ix) $\kappa_{\mathfrak{g}}|_{\mathfrak{h}}$ is positive definite.

Since κ is nondegenerate, we can define an inner product on the dual space \mathfrak{h}^* directly by

$$(\alpha, \beta) = \kappa(t_{\alpha}, t_{\beta}) \tag{2}$$

where, recall, t_{α} (resp. t_{β}) is the dual of α under κ .

Lemma 1.1 Assume α and β are roots, and that $\alpha + c\beta$ are all roots where $c \in \mathbb{C}$. Then

- The number $\frac{2(\alpha,\beta)}{(\alpha,\alpha)}$ is an integer
- c is an integer
- The direct sum of root spaces of the form $\mathfrak{g}_{\beta+i\alpha}$ is an irreducible S_{α} module. In particular if $x_{\alpha} \in \mathfrak{g}$, we have that $(ad x_{\alpha})^i : \mathfrak{g}_{\alpha} \to \mathfrak{g}_{\alpha+i\beta}$ is an isomorphism.

Pf. The vector space

$$T = \bigoplus \mathfrak{g}_{\beta+c\alpha} \tag{3}$$

where c ranges over all numbers in \mathbb{C} so $\beta + c\alpha \in \Phi$, is a finite dimensional S_{α} -module, and each $\mathfrak{g}_{\beta+i\alpha}$ is 1-dimensional. The weight (in the \mathfrak{sl}_2 -sense) of the space $\mathfrak{g}_{\beta+c\alpha}$ is computed by selecting some $x \in \mathfrak{g}_{\alpha+c\beta}$ and computing $(ad h_{\alpha})x$. We have

$$(ad h_{\alpha})x = (\beta + c\alpha)(h_{\alpha})x = \left(\frac{2(\alpha, \beta)}{(\alpha, \alpha)} + 2c\right)x$$
(4)

Since weights must be integers, we can take c = 0 to obtain the integrality of $\frac{2(\alpha,\beta)}{(\alpha,\alpha)}$. Then we also have that $2c \in \mathbb{Z}$.

Now we rule out c being half-integral. Assume $c = \frac{n}{2}$ (n odd). We can always choose n so $\mathfrak{g}_{\beta+\frac{n}{2}\alpha}$ has weight 0 or else weight 1 (with respect to the weight operator h_{α}). We have

$$h_{\alpha} x_{\beta + \frac{n}{2}\alpha} = \left(\frac{2(\alpha, \beta)}{(\alpha, \alpha)} + n\right) x_{\beta + \frac{n}{2}\alpha}$$
(5)

so $\frac{2(\alpha,\beta)}{(\alpha,\alpha)}$ is -n or 1-n.

<u>Case I</u>: Assume the S_{α} -weight of $\mathfrak{g}_{\beta+\frac{n}{2}\alpha}$ is 0, so $\frac{2(\alpha,\beta)}{(\alpha,\alpha)} = -n$. Consider the action of $S_{\beta+\frac{1}{2}\alpha} \approx \mathfrak{sl}_2$. We have

$$h_{\beta+\frac{n}{2}\alpha} x_{\beta} = \beta(h_{\beta+\frac{n}{2}\alpha}) x_{\alpha} = \frac{2(\beta,\beta) + n(\alpha,\beta)}{(\beta,\beta) + n(\alpha,\beta) + \frac{n^2}{4}(\alpha,\alpha)} x_{\alpha}$$
(6)

so with $(\alpha, \alpha) = -\frac{2}{n}(\alpha, \beta)$ we have

$$h_{\beta+\frac{1}{2}\alpha} x_{\beta} = 2 x_{\alpha} \tag{7}$$

Therefore $(ad y_{\beta+\frac{n}{2}\alpha})(x_{\beta})$ is non-zero, and lies in $\mathfrak{g}_{-\frac{n}{2}\alpha}$. This is impossible because $-\frac{n}{2}\alpha$ is not a root.

<u>Case II</u>: Assume the S_{α} -weight of $\mathfrak{g}_{\beta+\frac{n}{2}\alpha}$ is 1, so $\frac{2(\alpha,\beta)}{(\alpha,\alpha)} = 1 - n$.

First note that since n is odd, the right side is even so that $\frac{\alpha \cdot \beta}{\alpha \cdot \alpha}$ is an integer. Applying a destruction operator, we get that $\mathfrak{g}_{\beta+\frac{n-2}{2}\alpha}$ is also a non-trivial weight space. Since β is a root, we have the algebra S_{β} , and we can find the S_{β} -weights of $\mathfrak{g}_{\beta+\frac{n}{2}\alpha}$, $\mathfrak{g}_{\beta+\frac{n-2}{2}\alpha}$ as follows:

$$h_{\beta} \cdot x_{\beta + \frac{n}{2}\alpha} = \left(\beta + \frac{n}{2}\alpha\right) \cdot \frac{2\beta}{\beta \cdot \beta} x_{\beta + \frac{n}{2}\alpha}$$
$$= 2\left(1 + \frac{n}{2}\frac{\alpha \cdot \beta}{\beta \cdot \beta}\right) x_{\beta + \frac{n}{2}\alpha}.$$
(8)

Since $2 + n \frac{\alpha \cdot \beta}{\beta \cdot \beta}$ is an integer, *n* is odd, and $2 \frac{\alpha \cdot \beta}{\beta \cdot \beta}$ is an integer, we have that $\frac{\alpha \cdot \beta}{\beta \cdot \beta}$ is an integer. Now we cheat a bit and use the theorem below, which states that κ is positive definite (note that this is not cyclical: that result does not use this one). By Cauchy-Schwarz we have

$$\frac{(\alpha \cdot \beta)^2}{(\alpha \cdot \alpha)(\beta \cdot \beta)} \le 1 \tag{9}$$

so either $\alpha \cdot \beta = 0$, or α and β are parallel. We assumed they are not parallel, so $\alpha \cdot \beta = 0$, meaning the calculation above gives

$$h_{\beta} \cdot x_{\beta + \frac{n}{2}\alpha} = 2 x_{\beta + \frac{n}{2}\alpha}. \tag{10}$$

Therefore we can apply a destruction operator (namely y_{β}) to obtain a non-trivial weight space, namely $g_{\frac{n}{2}\alpha}$. Yet this is impossible because $\frac{n}{2} \neq \pm 1$.

The lemma's final assertion is a direct consequence of the fact that $\beta + i\alpha$ is a root only when $i \in \mathbb{Z}$ and that each root space is 1-dimensional.

The numbers $\frac{2(\beta,\alpha)}{(\alpha,\alpha)}$ are called the *Cartan integers*. The set of roots of the form $\beta + i\alpha$ is called the α -string through β .

Proposition 1.2 Assume $\alpha, \beta \in \Phi$ and $\beta \neq \pm \alpha$ Then

- a) The S_{α} -weight of \mathfrak{g}_{β} is $\frac{2(\beta,\alpha)}{(\alpha,\alpha)}$.
- b) If β is a maximal weight for S_{α} , then the S_{α} module generated by \mathfrak{g}_{β} is

$$\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{\beta-\alpha} \oplus \cdots \oplus \mathfrak{g}_{\beta-\frac{2(\alpha,\beta)}{(\alpha,\alpha)}\alpha}$$
(11)

c) If α, β are any roots, then $\beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha \in \mathfrak{h}^*$ is a root.

Pf. For (a), we compute

$$(ad h_{\alpha})(x_{\beta}) = \beta(h_{\alpha}) x_{\beta} = \left(t_{\beta}, \frac{2t_{\alpha}}{(\alpha, \alpha)}\right) x_{\beta} = \frac{2(\alpha, \beta)}{(\alpha, \alpha)} x_{\beta}.$$
 (12)

For (b), (c), let β be a root. The weight of the (possibly trivial) root space $g_{\beta - \frac{2(\alpha, \beta)}{(\alpha, \alpha)}\alpha}$ is

$$\left(\beta - \frac{2(\alpha,\beta)}{(\alpha,\alpha)}\alpha\right)(h_{\alpha}) = \beta(h_{\alpha}) - \frac{2(\alpha,\beta)}{(\alpha,\alpha)}\alpha(h_{\alpha}) = -\frac{2(\alpha,\beta)}{(\alpha,\alpha)}$$
(13)

which is the negative of the weight of the root space of \mathfrak{g}_{β} . Since the negative of a weight is a weight, we have that $\mathfrak{g}_{\beta - \frac{2(\alpha,\beta)}{(\alpha,\alpha)}\alpha}$ must be non-trivial.

2 The Euclidean space E and its inner product κ

Lemma 2.1 If $\beta, \gamma \in \mathfrak{h}^*$ then $(\beta, \gamma) = \sum_{\alpha \in \Phi} (\alpha, \beta)(\alpha, \gamma)$.

Pf. If $\Phi = \{\alpha_1, \ldots, \alpha_m\}$ then the decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha_i \in \Phi} \mathfrak{g}_{\alpha_i} \tag{14}$$

diagonalizes the adjoint action of all elements of \mathfrak{h} . In fact if $h \in \mathfrak{h}$ then

$$adh = \begin{pmatrix} 0 & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & \alpha_1(h) & & \\ & & & & \ddots & \\ & & & & & \alpha_m(h) \end{pmatrix}$$
(15)

Thus

$$(\beta, \gamma) = \kappa(t_{\beta}, t_{\gamma})$$

= $Tr \, ad \, t_{\beta} \, ad \, t_{\gamma}$
= $\sum_{i=1}^{m} \alpha_i(t_{\beta})\alpha_i(t_{\gamma})$
= $\sum_{i=1}^{m} (\beta, \alpha_i) (\gamma, \alpha_i).$ (16)

Lemma 2.2 Let $\{\alpha_1, \ldots, \alpha_n\} \subseteq \Phi$ be a \mathbb{C} -basis of \mathfrak{h}^* . Then $\Phi \subset span_{\mathbb{O}}\{\alpha_1, \ldots, \alpha_n\}$.

Pf. We have $\beta = \sum_{i=1}^{n} c_i \alpha_i$ for some constants $c_i \in \mathbb{C}$. Then $(\beta, \alpha_j) = \sum_i c_i A_{ij}$ where $A_{ij} = (\alpha_i, \alpha_j)$. Note that A_{ij} is invertible. Then

$$\frac{2(\beta,\alpha_j)}{(\alpha_j,\alpha_j)} = \sum_{i=1}^n c_i \frac{2(\alpha_i,\alpha_j)}{(\alpha_j,\alpha_j)}$$
(17)

Since $M_{ij} = A_{ij}(\alpha_j, \alpha_j)^{-1}$ is invertible and all numbers besides the c_i are integers, the c_i are rationals.

Lemma 2.3 If $\beta, \gamma \in \Phi$, then (β, γ) is rational, and $(\beta, \beta) > 0$.

Pf. We have $(\beta, \beta) = \sum_{\alpha \in \Phi} (\alpha, \beta)^2$ so that

$$\frac{4}{(\beta,\beta)} = \sum_{i=1}^{m} \left(\frac{2(\alpha,\beta)}{(\beta,\beta)}\right)^2.$$
(18)

The numbers on the right are all integers, so (β, β) is rational. Now letting $\gamma \in \Phi$ we have

$$(\beta, \gamma) = \sum_{\alpha \in \Phi} (\alpha, \beta)(\alpha, \gamma)$$

$$\frac{4(\beta, \gamma)}{(\beta, \beta)(\gamma, \gamma)} = \sum_{\alpha \in \Phi} \frac{2(\alpha, \beta)}{(\beta, \beta)} \frac{2(\alpha, \gamma)}{(\gamma, \gamma)}$$
(19)

where the right-hand side is integral, and (β, β) and (γ, γ) are rational. Therefore (β, γ) is rational. Finally with $(\beta, \beta) = \sum_{\alpha \in \Phi} (\alpha, \beta)^2$ again, we see that (β, β) is the sum of non-negative rationals. Thus κ is positive semi-definite. Since it is non-degenerate, it is therefore positive definite and $(\beta, \beta) > 0$.

Theorem 2.4 Setting $E = span_{\mathbb{R}}\Phi$ and restricting κ to E, we have that $dim_{\mathbb{R}}E = dim_{\mathbb{C}}\mathfrak{h}$ and κ is positive definite inner product.

Pf. Trivlal.

3 Root Space Axioms

It is useful to put some of our conclusions into one place; the theorem that follows verifies what we will call the *root space axioms*.

Theorem 3.1 Let \mathfrak{g} be a semisimple Lie algebra, \mathfrak{h} any maximal toral subalgebra, Φ the set of roots associated to \mathfrak{h} , and $E = \operatorname{span}_{\mathbb{R}} \Phi$ with positive definite inner product κ . Then

- a) Φ spans E, and $0 \notin \Phi$
- b) If $\alpha \in \Phi$ then $-\alpha \in \Phi$, but $c\alpha \notin \Phi$ for $c \neq \pm 1$
- c) If $\alpha, \beta \in \Phi$, then $\beta \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha \in \Phi$
- d) If $\alpha, \beta \in \Phi$ then $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$