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Afterword (1994)

Each reprinting of this text has given me an opportunity to correct mis-
prints and errors pointed out by patient readers. The most substantial change
was the addition of the appendix to §24 at the time of the second printing. If
I were starting today from scratch, I would certainly do some things—Ilarge
and small—differently. In the area of notation, for example, p is now more
commeonly used than & to denote the half-sum of positive roots. But with many
copies of the book already in circulation, T have been reluctant to disturb the
existing format.

While the structure theory developed in Chapters 1-V has evolved very
little over the past 25 years, there has been an explosion of new work in
representation theory. The foundations laid here in Chapter VI are stiil valid,
being aimed primarily at the classical finite dimensional theory of Cartan and
Weyl. However, some of the ad hoc terminology and notation I introduced
have long since been replaced by other conventions in most of the literature:
In place of “standard cyclic modules” one now speaks of “highest weight
modules”, the universal ones being called “ Verma modules ”. Verma modules
are usually denoted M (1) rather than Z(4)}, while the irreducibie quotient is
labelled L(%). Of course, Lie theory is a sprawling subject, with many conflict-
ing notational schemes (especially for root systems). So the student has to be
somewhat flexible in any case when approaching the literature.

The present text contains much of the standard core of semisimple Lie
theory, in a purely algebraic setting. This theory—especially the classification
of simple Lie algebras by Dynkin diagrams—is beautifut in its own right,
whatever one’s ulterior motive for studying it. But readers should be aware of
the far-reaching developments of recent decades that rely in some way on this
core. While it is impossible in a page or two to survey these developments
adequately, a quick overview may be useful. References below are mainly to
books rather than to the multitude of original articles; the latter are well
documented in the annual subject index of Mathematical Reviews. With due
apology for omissions, here are some of the subjects most closely related to
semisimple Lie algebras:

e The BGG category (0. This consists of finitely-generated weight modules on
which a fixed Borel subalgebra acts locally finitely. Tt includes Verma
modules and irreducible highest weight modules L{1) for arbitrary 4, as well
as projective and injective objects. Besides the BG(G resolution of a finite
dimensional L({4) by Verma modules, which makes more concrete the
derivation of Weyl’s character formula presented here, one encounters
BGG reciprocity along with the Jantzen filtration and sum formula: see
J. C. Jantzen, Moduln mit einem hdchster Gewicht, Lect. Notes in Mathe-
matics 750, Springer-Verlag, 1979, .
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@ Kazhdan—Lusztig conjectures. A conjectured character formula for all L(4)
appeared in the seminal paper by D. A. Kazhdan and G, Lusztig, Represen-
tations of Coxeter groups and Hecke algebras, Invent. Math, 53 (1979),
165-184. This formula was quickly proved (independently) by Beilinson-
Bernstein and by Brylinski-Kashiwara, using a dazzling array of tech-
nigues. The Hecke algebra approach has become extremely influential in
several kinds of representation theory,

@ Primitive ideals in enveloping algebras. Combining noncommutative ing
theory and algebraic geometry with the representation theory of semisimple
Lic algebras yields deep results on the structure of universal enveloping
algebras. See J. Dixmier, Algébres enveloppantes, Gauthier-Villars, 1974,
and J. C, Jantzen, Einhillende Algebren halbeinfacher Lie-Algebren,
Springer-Verlag, 1983,

e Lie group representations. Lic algebra techniques indicated above have led
to decisive progress in many areas of the representation theory of semi-
simple (or reductive) Lie groups. See for example D. A. Vogan, Ir., Represen-
tations of Real Reductive Lie Groups, Birkhiuser, 1981,

® Representations of algebraic groups. Much of the theory of semisimple Lie
algebras can be adapted to semisimple algebraic groups in arbitrary charac-
teristic. Representations in characteristic p are somewhat like infinite di-
mensional representations in cliaracteristic 0. See J. C. Jantzen, Represen-
tations of Algebraic Groups, Academic Press, 1987,

® Finite groups of Lie type. Lie theory is essential to. understanding the
structure of these groups, as well as their ordinary and modutar representa-
tions, See R, W. Carter, Finife Groups of Lie Type: Conjugacy Classes;and
Complex Characters, Wiley, 1985. _

o Kac-Moody Lie algebras and vertex operators. The Serte relations of §18
lead to new classes of infinite dimensional Lie algebras, when the Cartan
matrix is replaced by a “generalized Cartan matrix”. These Kac-Moody
Lie algebras and their representations interact deeply with mathematical
physics, combinatorics, modular functions, etc. See V. G. Kac, Infinite
Dimensional Lie Algebras, 3rd edition, Cambridge University Press, 1990,
and 1. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and
the Monster, Academic Press, 1988.

@ Quantum groups. Since the pioneering work of Drinfeld and Jimbo in the
mid-eighties, quantized enveloping algebras have become ubiguitous in
mathematics and mathematical physics. See G. Lusztig, Introduction to
Quantum Groups, Birkhduser, 1993, and J. Fuchs, Affine Lie Algebras and
Quantum Groups, Cambridge University Press, 1992.

® Combinatorics, geometry, etc. Apart from their connection with TLie
algebras, root systems and root lattices along with related Coxeter groups
such as Weyl groups play an essential role in many areas: Macdonald
formulas, guivers and representations of finite dimensional algebras, singu-
larities, crystals and quasi-crystals, etc. See for example J. H. Conway,
N. J. Sloane, Sphere Packings. Lattices, and Groups, Springer-Verlag, 1993.
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