Chapter 111

Root Systems

9. Axiomatics

9.1. Reflections in a euclidean space

Throughout this chapter we are concerned with a fixed euclidean space E,
i.e., a finite dimensional vector space over R endowed with a positive definite
symmetric bilinear form (&, B). Geometrically, a reflection in E is an invertible
linear transformation leaving pointwise fixed some hyperplane (subspace of
codimension one) and sending any vector orthogonal to that hyperplane
" into its negative. Evidently a reflection is orthogonal, i.e., preserves the inner
product on E. Any nonzero vector « determines a reflection o, with reflecting
hyperplane P, = {8 e E|(8, «) = 0}. Of course, nonzero vectors proportional
to « yield the same reflection. It is easy to write down an explicit formula:
i) = -
(e, @)
points in P,.) Since the number 2(8, «)/(x, &) occurs frequently, we abbreviate
it by <8, «>. Notice that {8, «) is linear only in the {irst variable.

For later use we record the fellowing fact.

. (This works, because it sends « to —« and fixes all

Lemma. Let © be a finite set which spans E. Suppose all refiections o,(« € D)

leave © invariant. If 6 € GL(E) leaves ® invariant, fixes pointwise a hyperplane

P of E, and sends some nonzero «  © to its negative, then v = o, (and P = P

Proof. Let r = oo, {=o0, 1), Then @) = ®, =(«) = «, and = acts as
the identity on the subspace R as well as on the quotient E/Ra. So all eigen-
values of = are 1, and the minimal polynomial of = divides (T'— Df (£ =
dim E). On the other hand, since @ is finite, not all vectors B, #(8), . . ., (8)
(8<®, k > Card ®) can be distinct, so some power of = fixes 3. Choose k
large enough so that +* fixes all 8 « ®. Because  spans E, this forces & =1;
so the minimal polynomial of = divides 7% —1. Combined with the previous
step, this shows that « has minimal polynomial T—1 = g.c.d. (T%—1,(T—-1)9,
ie,r=1 1

9.2. Root systems

A subset @ of the euclidean space E is called a root system in E if the
following axioms are satisfied:

(R1} @ is finite, spans E, and does not contain 0.

(R2) If o e ®, the only multiples of « in ® are +eu.

(R3) If « e®, the reflection o, leaves ¢ invariant.

{R4) If «, Be®, then {(f, a> e Z.
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There is some redundancy in the axioms; in particular, both (R2) and
(R3) imply that ® = —®. In the literature (R2) is sometimes omitted, and
what we have called a “‘root system” is then referred to as a “reduced root
sysfem” (cf. Exercise 9). Notice that replacement of the given inner product
on E by a positive multiple would not affect the axioms, since only ratios of
inner products occur.

Let @ be a root system in E. Denote by #" the subgroup of GL(E)
generated by the reflections o (x ¢ ®). By (R3), #” permutes the set @, which
by (R1) is finite and spans E. This allows us to identify %~ with a subgroup
of the symmetric group on @; in particular, #" is finite. # is called the Weyl
group of @, and plays an extremely important role in the sequel. The following
lemma shows how certain automorphisms of E act on #” by conjugation.

Lemma. Let ® be a root system in E, with Weyl group #". If o ¢ GL(E)
Jeaves @ invariant, then ooe™t = oy for all xe®, and (B, «) = {o{f),
o(a)> for all «, B e®.

Proof. voe No(B)) = vo (B) e @, since o,(f) e ®. But this equals o(f—
(B, ay «) = o(B)— (B, «) ofa). Since o{8) runs over ® as § runs over D, we
conclude that oo, ! leaves @ invariant, while fixing pointwise the hyper-
plane o(P,) and sending o(e) to —o{a). By Lemma 9.1, 00,071 = o, But
then, comparing the equation above with the equation o, ,(e(8)) = o(8)—
(a(B), ulw)y ofx), we also get the second assertion of the lemma. {

There is a natural notion of isomorphism between root systems @, @’
in respective euclidean spaces E, E': Call (@, E) and (@', E') isomorphic if
there exists a vector space isomorphism (not necessarily an isometry) ¢:
E — E’ sending © onto ®’ such that {&(8), $(e)> = ¢B, o> for each pair of
roots «, 8 e®. It follows at once that ol P(B)} = (o,(B)). Therefore an
isomorphism of root systems induces a natural isomorphism o > ¢ o oo $77
of Weyl groups. In view of the lemma above, an automorphism of & is the
same thing as an automorphism of E leaving @ invariant. In particular, we
can regard ¥ as a subgroup of Aut @ (cf. Exercise 6).

2
It is useful to work not only with « but also. with o' = * . call
o, o

¥ = {a"jae D} the dual (or inverse) of ®. It is in fact a root system in E,
whose Weyl group is canonically isomorphic to #" (Exercise 2). (In the Lie
algebra situation of §8, « corresponds to f,, while o¥ corresponds to /1,
under the Killing form identification of H* with H.)

9.3, Examples

Call £ = dim E the rank of the root system ©. When £ < 2, we can
describe @ by simply drawing a picture. In view of (R2), there is only cone
possibility in case # = 1, labelled (A;):
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Of course, this actually is a root system (with Weyl group of order 2); in
Lie algebra theory it belongs to s1(2, F).

Rank 2 cffers more possibilities, four of which are depicted in Figure 1
(these turn out to be the only possibilities). In each case the reader should
check the axioms directly and determine %",
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Figure 1

9.4. Pairs of roots

Axiom (R4) limits severely the possible angles occurring between pairs
of roots. Recall that the cosine of the angle § between vectors «, S e E is

2(8,
given by the formula ] [8]] cos § = («, £). Therefore, <8, a> = (f )_) -
2 w cos 8 and {x, B> <B, «> = 4 cos® §. This last number is a nonnegative

fee I
integer; but 0 < cos? 8 < 1, and (e, B, {B, > have like sign, so the following

possibilities are the only ones when o« % £ and ||B]] = [l«[f (Table 1).

9.4, Pairs of roots 45

Table 1,
Cu, By (B, 8 (18 1% flc

0 0 w2 undetermined
1 1 w3 1

-1 —1 2w/3 i
1 2 i~ 2

-1 -2 Ini4 2
1 3 7/6 3

-1 -3 5n/6 3

The reader will observe that these angles and relative lengths are just the
ones portraved in Figure 1 (9.3). (For A, x A, it is harmless to change scale
in one direction so as to insure that ll«}| = ||8|l.) The following simple but
very useful criterion can be read off from Table 1.

Lemima. Let o, 8 be nonproportional roots. If («, B) > 0 (i.e., If the angle
between a and B is strictly acute), then «—pB is a root. If {«, 8) < 0, then a+f
is a root,

Proof. The second assertion follows from the first (applied to —8 in
place of £). Since («, B) is positive if and only if {«, §) is, Table 1 shows that
one or the other of {u, 8>, (8, «) equals 1. If {«, B> = I, then opla) = 2 —F ¢
® (R3); similarly, if {8, «> = I, then f—a e®, hence v,_ (B—a) = a—f ¢
¢

As an application, consider a pair of nonproportional roots «, 8. Look
at all roots of the form f+ix (i e Z), the a-string through B. Let r, ge 7
be the largest integers for which 8—ra e ®, 8+ go ¢ @ (respectively), If some
B+ iné¢ ®(—r <i<g),wecanfind p < sinthisinterval such that § + pu e @,
B+(p+Dag®, B+{s—1)a¢ D, S+ 5¢ ¢ D. But then the lemma impiies both
(«, B4po) = 0, (o, B-+50) < 0. Since p < s and (&, «) > 0, this is absurd.
We conclude that the «-string through B is unbroken, from B—ro to S+ ga.
Now o, just adds or subtracts a multiple of « to any root, so this string is
invariant under o,. Geometrically, it is o\byious that o, just reverses the
string (the reader can easily supply an algebraic proof). In particular,
o {B+qge) = B—ra. The left side is §— {8, «)a—ge, so finally we obtain:
r—gq = {fB, «> (cf. Proposition 8.4(e}). It follows at once that root sirings are
of length at most 4.

Exercises
{Unless otherwise specified, ® denotes a root system in E, with Weyl
group W)

1. Let E' be a subspace of E. If a reflection o, leaves E’ invariant, prove that
either w e E' or else E' < P_.
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. Prove that @' is a root system in E, whose Wey! group is naturally

isomorphic to ¥ show also that {a", 8'> = (B, «», and draw a picture
of @ in the cases A, A,, B,, G,.

. In Table 1, show that the order of 0,0, in ¥ is (respectively) 2, 3, 4, 6

when 8 = #/2, »/3 (or 27{3}, =/4 {(or 3n/4), =6 (or 5=/6). [Note that
o0y = rotation through 26.]

. Prove that the respective Weyl groups of A, x A, A;, B,, G, are dihedral

of order 4, 6, 8, 12. If @ is any root system of rank 2, prove that its Weyl
group must be one of-these,

. Show by example that «—§ may be a root even when («, 8) < 0 (cf.

Lemma 9.4). :

. Prove that #" is a normal subgroup of Aut @ (=group of all iso-

morphisms of @ onto itself).

. Let a, B e® span a subspace E” of E. Prove that-E’ M @ is a root system

in E’. Prove similarly that @ N (Zx+ZB) is a root system in E' (must this
coincide with E" n®7). More generally, let @' be a nonempty subset of
@ such that®’ = — &', and such thata, 2 e @’ e+ e D implies a8 ¢ D,
Prove that @ is a root system in the subspace of E it spans. [Use Table 1].

. Compute root strings in G, to verify the relation r—g = {8, ).
. Let @ be a set of vectors in a euclidean space E, satisfying only (R1),

(R3), (R4). Prove that the only possible multiples of ¢ ® which can be
in @ are +1/2 «, +a, +2« Verify that {a e D|2= ¢ @} is a root system.
Example: See Figure 2, :
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Figure 2
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10. Let'a, 8 ®. Let the a-string through g be §—ra, .. ., f+¢=, and let the
qir+1)  g'('+1)
BA ()
11. Let ¢ be a positive real number. If ¢ possesses any roots of squared
length ¢, prove that the set of all such roots is a root system in the
subspace of £ it spans. Describe the possibilities occurring in Figure 1.

B-string through e be « — '8, . . ., a+¢'B. Prove that

Notes

The axiomatic approach to root systems (as in Serre [2], Bourbaki [2])
has the advantage of providing resuits which apply simultaneously to Lie
afgebras, Lic groups, and linear algebraic groups. For historical remarks,
consult Bourbaki [2].

18, Simple roots and Weyl group

Throughout this section © denotes a root system of rank £ in a euclidean
space E, with Weyl group .

10.1. Bases and Weyl chambers

A subset A of ¥ is called a base if:
(BI) Ais a basis of E,
(B2) each root 8 can be writtenr as 8 = X ko {« = A) with integral co-
efficients &, all nonnegative or all nonpositive.
The roots in A are then called simple. In view of (B1), Card A = ¢, and the
expression for 8 in (B2} is unique. This allows us to define the height of a
root (relative to A)by it § = Y k.. 1f all &, = O (resp. all &, < 0), we cali

aEA

B positive (resp. negative) and write 8 > 0 (resp. B < 0). The collections of
positive and negative roots (relative to A) will usually just be denoted ©*
and @ (clearly, @~ = —®™). If « and B are positive roots, and «+£ is a
root, then evidently « + £ is also positive. Actually, A defines a partial order
on E, compatible with the notatipn o > 0: define p < 2 iff A—p is a sum of
positive roots (equivalently, of sinﬁple roois) or 4 = A

The only problem with the definition of base is that it fails to guarantee
existence. In the examples shown i (9.3), the roots labelled «, 8 do form a
base in each case (verify!). Notice there that the angle between « and £ is
obtuse, i.e., (o, ) = 0. This is no accident.

Lemma. {f A is a base of ©, ther (o0, 8) < O fora # B in A, and a— B is not

a root.

Proof. Otherwise («, 8) > 0. Since « # B, by assumption, and since
obviously « # —8, Lemma 9.4 then says that « —f is a root. But this violates
(B2). 0




48 ‘ Root Systems
Qur goal is the proof of the following theorem.

Theorem. @ fas a base.

The proof will in fact yield a concrete method for constructing all possible
bases. For each vector yeE, define @*(y) = {a e ®|(y,a) > 0} = the set of
roots lying on the “positive” side of the hyperplane orthogonal to y. It is
an clementary fact in euclidean geometry that the union of the finitely
many hyperplanes P, (a e ®) cannot exhaust E (we leave to the reader the

task of formulating a rigorous proof). Call y e E regular if y=E — U Pa.
aed

singular otherwise. When y is regular, it is clear that @ = Oy U —0F ().
This is the case we shall now pursue. Call « @7 (y} decomposable if o« =
B,+8, for some f;e®*(y), indecomposable otherwise. Now it suffices to

prove the following statement.

Theorem’. Let y e E be regular. Then the set Aly) of all indecompaosable
roots in @ (y) is a base of ®, and every base is obtainable in this manner.

Proof. This will proceed in steps.

(1) Each root in ©*(y} is a nonnegative Z-linear combination of Aly).
Otherwise some « € *(y) cannot be so written; choose « so that (y, «) is as
small as possible. Obviously o itself cannot be in A(y), so « = f,+5;
(B, e DT (y)), whence (y, ) = {y, 1)+, Ba). But each of the (y, 8,) is posi-
tive, so f, and 8, must each be a nonnegative 7Z-linear combination of A(y)
(to avoid contradicting the minimality of (», «)), whence o also is. This
contradiction proves the original assertion. )

() If «, B e A(y), then =z, B) < 0 unless « = B. Otherwise «—§ is a root
(Lemma 9.4), since B clearly cannot be —a, 50 a— B or B—ais in ¥ (y)
In the first case, @ = f+(x—8), which says that « is decomposable; in the
second case, B = e+ (8—a) is decomposable. This contradicts the assump-
tion.

(3) Aly) is a linearly independent set. Suppose Tro = 0 (xeAly), r, e R).
Separating the indices o for which r, > 0 from those for which r, < 0, we
can rewrite this as Ss,a = Zf8 (s, £; > 0, the sets of o’s and B’s being
disjoint). Call & = Zs,a. Then (¢, €) = 8., {2, §) < 0 by step (2), forcing

o f
e = 0, Then 0 = (y, &) = Ls,{y, «), forcing all s, = 0. Similarly, all ¢; == 0.
(This argument actually shows that any set of vectors lying strictly on one
side of a hyperplane in E and forming pairwise obtuse angles must be linearly
independent.)

(4) Aly) is a base of ®. Since © = OF () U — &*(y), the requirement
(B2) is satisfied thanks to step (1). It also follows that A(y) spans E, which
combined with step (3) yields (B1).

(3) Each base A of ® has the form A(y) for some regular y < E. Given A,
select y £ E so that {y, «) > 0 for all « ¢ A, (This is possible, because the
intersection of “positive” open half-spaces associated with any basis of E
is nonvoid (Exercise 7).) In view of (B2), y is regular and ®* < ®F(y),
&~ = —®*(y) (s0 equality must hold in each instance). Since Ot = Dt (y),
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A clearly consists of indecomposable elements, i.e.,, A < A(y). But Card
A= Card Aly) = £, so A = Afy). 1[I

It is useful to introduce a bit of terminology. The hyperplanes P, (o ¢ @)
partition E into finitely many regions; the connected components of E — J P.

are called the (open) Weyl chambers of E. Each regular y e E therefore belongs
to precisely one Weyl chamber, denoted €(y). To say that &(y) = &y} is
just to say that v, ¥’ lie on the same side of each hyperplane P, (x=®), L.,
that ®*(y) = ®*(3"), or Ay} = A(y'). This shows that Wey! chambers are in
natural 1-1 correspondence with bases. Write €(4) = E(y) if A = A(y), and
call this the fundamental Weyl chamber relative to £, E(A) is the open convex
set (intersection of open half-spaces) consisting of all y € E which satisfy the
inequalities (y, ) > 0 {x € A). In rank 2, it is easy to draw the appropriate
picture; this is done in Figure 1 for type A,. Here there are six chambers,
the shaded one being fundamental relative to the base {x, B}.

The Weyl group obviously sends one Weyl chamber onto another:
explicitly, o(@(y)) = &(oy), if o =#” and y is regular. On the other hand,
# permutes bases: o sends A to o(A), which is again a base (why7). These
two actions of # are in fact compatible with the above correspondence

_

Figure 1
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between Weyl chambers and bases; we have o(Aly)) = A(gy), because
(oy, o) = (v, ).

10.2. Lemmas on simple roots

Let A be a fixed base of ®. We prove here several very useful lemmas
about the behavior of simple roots.

Lemma A. If o is positive but not simple, then w—B is a root {necessarily
positive) for some fel.

Proof. If (x, B} < 0 for all <A, the parenthetic remark in step (3) in
(10.1) would apply, showing that A {«} is a linearly independent set. This
is absurd, since A is already a basis of E. So («, £) > 0 for some f e A and
then «— 8 € ® (Lemma 9.4, which applies since § cannot be proportional to o).
Write o = ¥ kyy (all k, = 0, some k, > 0 for v # B). Subtracting 8 from «

¥EA
yields a Z-linear combination of simple roots with at least one positive

coefficient. This forces all coefficients to be nonnegative, thanks to the
uniqueness of expression in (B2). I

Corollary. Each §e®™ can be written in the form a +.. +oy (e €4,
not necessarily distinet) in such a way that each partial sum a,+. .. te;isa

roo!.
Proof, Use the Jemma and induction on htg. [
Lemma B. Let « be simple. Then o, permutes the positive roots other than .
Proof LetBe®" — {a}, B = Zakyy (k,eZ™). It is clear that 8 is not pro-
oE

portional to «. Therefore, k, # 0 for some y # «. But the coefficient of y in
o {f) = B—¢B, a> aisstill k. In other words, o(8) has at least one positive
coefficient (refative to A), forcing it to be positive. Moreover, o.(8) # «,
since « is the image of —a. [

Corollary. Set 8 = +3 8. Then o {8) = 8—« for all « eA.
£50

Prosf. Obvious from the lemma. 0

Lemma C. Let «,, ..., A (not necessarily distinct). Write o; = o,,.
If a ... e, (o) Is negative, then for some index 1 <5 <1, o;...6 =
Gl vea gy Ogagoe-Tymys

Proof. Write B; = oy ... gy(a), 0<i<r=2, Bioy = a, Since

Bo<0 and B, >0, we can find a smallest index s for which A, > (.
Then o{8) = B,., <0, and Lemma B forces B, = «,. In general {Lemma
9.2), o e implies o, = go,0”'; 50 in particular, o, = (7,4 - . T i)
{(o0,_, . ..0,+,) which yields the femma. [}

Corollary. If ¢ = o, ... a isan expression for o & W in terms of reflections
corresponding fo simple roots, with 1 as small as possible, then a{a) < 0. [
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10.3. The Weyl group

Now we are in a position to prove that %~ permutes the bases of D (or,
equivalently, the Weyl chambers) in a simply transitive fashion and that %~
is generated by the “simple reflections” relative to any base A (ie., by the
o, for o« e A).

Theorem. Let A be a base of .

(@) If y e E, v regular, there exists o €W such that (o(y), &) > 0 for all
weA (so # acts transitively on Weyl chambers).

(b) If A’ is another base of ®, then a(A") = A for some a ¢ W (so W acts
transitively on bases).

(¢) If « is any root, there exists o € W such that a(«} € A,

(d) #" is generated by the o, (« € A).

(&) If o(A) = A, oW, then o =1 (so # acts simply transitively on
bases).

Proaf. Let #7' be the subgroup of %~ generated by all o, (« ¢ A). We shall
prove (a)-(c) for #"', then deduce that #"" = #".

(a) Write § = + Y «, and choose o € #"' for which (o(y), &) is as big as
ax0
possible. If « is simpie, then of course o,0 is also in #7', so the choice of o

implics that (o(2), 8) = (5,00, 8) = (o(r), 2,(3)) = (o), d—2) = (o), &)
—(o(y), «) (Corollary to Lemma 10.2B). This forces (o(y), «) = 0 for all
@ €A, Since y is regular, we cannot have (o(y), ) = 0 for any «, because
then v would be orthogonal to ¢~ '«. So all the inequalities are strict. There-
fore ofy) lies in the fundamental Weyl chamber €(A), and o sends E(») to
E(A) as desired.

(b) Since ¥ permutes the Weyl chambers, by (a), it also permutes the
bases of © (transitively). '

(c) In view of (b), it suffices to prove that each root belongs to at least
one base. Since the only roots proportional to « are +, the hyperplanes
P, (B # +«) are distinct from Pg, so there exists y e P, y ¢ Py (all B # £ o)
(why?). Choose ' close enough to y so that (y', &) = & > 0 while [(¢, B) > &
for all  # +«. Evidently « then belongs to the base A(y’).

(d) To prove ¥ = #", it is enough to show that each reflection o,
(¢ € ®) is in ¥, Using (c), find o e ¥ such that 8 = o(a) € A. Then oy =
oty = 00,0, 80 0, = o togoe W,

(e) Let o(A) = A, but o # 1. If ¢ is written minimally as a product of
one or more simple reflections (which is possible, thanks to (d})), then the
Corollary to Lemma 10.2C is contradicted. [

We can use the lemmas of (10.2) to explore more precisely the significance
of the generation of %~ by simple reflections.

When o e is written as o, ..., (¢;€A, t minimal), we call the
expression reduced, and write (o) = 1: this is the length of o, relative to A.
By definition, #(1) = 0. We can characterize length in another way, as
follows. Define n(s) = number of positive roots « for which o(a) <0.
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Lemma A. For all e W, {(v} = n{a).

Proof. Proceed by induction on (o). The case {{¢) = 0 is clear: £{o) = 0
implies ¢ = 1, so n(s) = 0. Assume the lemma true for all re%  with
#(7) < {{s). Write ¢ in reduced form as 0 = o, ... 0., and set « = «, By
the Corollary of Lemma 10.2C, o{«} < 0. Then Lemma 10.2B implies that
n(oo,) = n(o)}—1. On the other hand, foo,} = fo)—1 < #{0), so by induc-
tion f{oe,) = n(es,). Combining these statements, we get Ka) = n(o). 0

Next we look more closely at the simply transitive action of % on
Weyl chambers (parts (a) and (e) of the theorem). The next lemma shows
that the closure ©(A) of the fundamental Weyl chamber relative to A is a
fundamental domain for the action of % on E, i.e., each vector in E is % -
conjugate to precisely one point of this set (cf, Exercise 14).

Lemma B. Ler A,p e €(A). If o=y for some o c ¥, then o is a product
of simple reflections which fix A; in particular, A= p.

Proaf. Use induction on [(a), the case £{o)=0 being clear. Let {(a)}> 0.
By Lemma A, o must send some positive root to a negative root; so ¢
cannot send all simple roots to positive roots. Say ca<0(xeA). Now
0= (p,o0)=(c " wa)=C(A,«) =0, because A\, pc ©(A). This forces (A, a)=
0,0, A=A, (oo )A=p. Thanks to Lemma 10.2B (and Lemma A), £(oo,)=
f{o)—1, so induction may be applied. [

104, Irreducible root systems

@ is called irreducible if it cannot be partitioned into the union of two
proper subsets such that each root in one set is orthogonai to each root in
the other. (In (9.3), A, A, B,, G, are irreducible, while A x A, is not.)
Suppose A is a base of ®. We claim that © is irreducible if and only if &
cannof be partitioned in the way just stated. In one direction, let @ = @, U O,
with (®,, ©,) = 0. Unless A is wholly contained in @ or ®,, this induces a
similar partition of A; but A = &, implies (4, &,) = 0, or {E, ®,) =0,
since A spans E. This shows that the “if” holds. Conversely, let ® be irre-
ducible, but A = A; U A, with (A,, 4;) = 0. Each root is conjugate to a
simple root (Theorem 10.3(c)), so ® = &, W @,, P, the set of roots having
a conjugate in A;. Recall that («, £) = 0 implies 0,05 = ogo,. Since #” is
generated by the o, (« = &), the formula for a reflection makes it clear that
each root in @, is gotten from one in A; by adding or subtracting elements
of A;. Therefore, ©; lies in the subspace E; of E spanned by A;, and we see
that (¢, ®,) = 0. This forcez= @, = @ or ®; = @, whence Ay = & or
A, = g,

Lemma A. Let O be irreducible. Relative to the partial ordering <, there
is a unique maximal root B (in particular,  # § implies ht o < ht § for all a @,
and (B, &) = 0 for all xe A). If § = Zk,a (e A) then all k, > 0.
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Progf. Let B = Zka (xcA) be maximal in the ordering; evidently
B>0.TfA, = {acAlk, > 0} and A, = {acAlk, =0}, thenA = A, U A,
is a partition. Suppose A, is nonvoid. Then {«, 8) < 0 for any « € A; (Lemma
10.1); since @ is irreducible, at least one x € A, must be nonorthogonal to A,,
forcing (¢, ') < O for some «" e A, whence (¢, B} < 0. This implies that
B+ is a root (Lemma 9.4), contradicting the maximality of 8. Therefore A,
is empty and all &, > 0. This argument shows also that (=, 8) = 0 for all
ac A (with («, B) > 0 for at least one «, since A spans E). Now let 8’ be
another maximal root. The preceding argument applies to §', so #’ involves
{with positive coefficient) at least one « € A for which (=, 8) > 0. Tt follows
that (8', B) > 0, and B—£" is a root (Lemma 9.4) unless 8§ = 8. But if
B—pA" is a root, then either 8 < B’ or else 8’ < B, which is absurd. So 8 is
unique. []

Lemma B. Let & be irreducible. Then %" acts irreducibly on E. In particular,
the # -orbit of a root « spans E,

Proof. The span of the % -orbit of a root is a (nonzero} ¥ -invariant
subspace of E, so the second statement follows from the first. As to the first,
let £ be a nonzero subspace of E invariant under % . The orthogonal
complement E” of E'is also % -invariant, and E = E' @ E". It is trivial to
verify that for « ¢ @, either x € E’ or else £ = P,, since o (E") = E' (Exercise
9.1). Thus, « ¢ E’ implies « = E”, so each root lies in one subspace or the other.
This partitions @ into orthogonal subsets, forcing one or the other to be
empty. Since ® spans E, we conclude that E' = E. [

Lemma C. Let © be irreducible. Then at most two root lengths occur in @,
and all roots of a given length are conjugate under ¥,

Proof. If «, B are arbitrary roots, then not all o{«) (¢ ¢#") can be
orthogonal to B, since the ofx) span E (Lemma B). If (x, 8) # 0, we know
(cf. (9.4)) that the possible ratios of squared root lengths of «, 8 are 1, 2, 3,
1/2, 1/3. These two remarks easily imply the first assertion of the lemma, since the
presence of three root lengths would yield also a ratio 3/2. Now let «,
have equal length. After replacing one of these by a # -conjugate (as above),
we may assume themn to be nonorthogonal {and distinct: otherwise we're
done!). According to (9.4), this in turn forces {«, B> = (B, «) = 1.
Replacing 8 (if need be) by —B8 = ay(f), we may assume that («, > = 1.
Therefore, (o,040,) (B) = 0,04 —a) = ogf{—~B—a+B)=a [

In case @ is irreducible, with two distinct root lengths, we speak of long
and short roots, (If all roots are of equal length, it is conventional to call all
of them long.)

Lemma D. Let @ be irreducible, with two distinct root lengths. Then the
maximal root B of Lemma A is long.
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Proof. Let « € @ be arbitrary. It will suffice to show that (8, B) = («, «).
For this we may replace « by a % -conjugate lying in the closure of the
fundamental Weyl chamber (relative to A). Since f—a > 0 (Lemma A}, we
have (y, f—«) = 0 for any y € €(A). This fact, applied to the cases y = f
(cf. Lemma A) and y = o, yields (8, 8) = (8, &) = (&, «). 0

Exercises

1. Let @' be the dual system of ®,A"={a"|a ¢ A}. Prove that A" is a base

of ¢.{Compare Weyl chambers of ® and @7}

2. If A is a base of @, prove that the set (Za+Z8) N D (a # B inAyis a
root system of rank 2 in the subspace of E spanned by o, 8 (cf. Exercise
9.7). Generalize to an arbitrary subset of A, '

3.-Prove that each root system of rank 2 is isomvrphic to one of those
listed in (9.3).

4, Verify the Corollary of Lemma 10.2A directly for G,.

5. If ¢ ¢ #” can be written as a product of r simple reflections, prove that
¢ has the same parity as o).

6. Define a function sn: %" — {+1} by sn(o) = (— 1Y) Prove that sn is
a homomorphism (cf. the case A,, where %" is isomorphic to the sym-
metric group ). ,

7. Prove that the intersection of “positive” open half-spaces associated
with any basis v,,...,v, of E is nonvoid. [If §,; is the projection of y; on
the orthogonal complement of the subspace spanned by all basis
vectors except y;, consider y = 27,8, when all »,>0.]

8. Let A be a base of @, « # 8 simple roots, @, the rank 2 root system in
E.,s = Ra+Rf (sec Exercise 2 above). The Weyl group #7,; of @, is
generated by the restrictions =, 75 to E,; of o, o4, and #”,, may be
viewed as a subgroup of #”. Prove that the “length” of an element of
W .4 (relative to 1,, ;) coincides with the length of the corresponding
element of %",

9, Prove that there is a unique element ¢ in #” sending ©* to ®~ (relative
to A). Prove that any reduced expression for o must involve all ¢ (« € A).
Discuss (o).

,

10. Given A = {ay,.,., 0} in @ let A =) ko, (k;cZ, all k; = 0 or all
i=1I

; = 0). Prove that either A is a multiple (possibly 0) of a root, or else

there exists o € #” such that ek = Z klx;, with some k; > 0 and some

=1 .
k; < 0.[Sketch of proof: If X is not a muitiple of any root, then the hyper-
plane P, orthogonal to A is not included in | j P,. Take ue Py — ) P,

aed aced

Then find ¢ € % for which all («;, o) > 0. 1t follows that 0 = (A, u) =
(o}, op) = Tk(x;, op).]
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11, Let ® be irreducible. Prove that ®" is also irreducible. If @ has all roots
of equal length, so does @ (and then 9" is isomorphic to @). On the
other hand, if @ has two root lengths, then so does ©; but if « is long,
then o' is short (and vice versa). Use this fact to prove that @ has a
unique maximal short root (relative to the partial order < defined by A).

12. Let Ae € (A). If oA=A\ for some o ¢ #, then o=1.

13. The only reflections in %" are those of the form o, (= € ®). [A vector in
the reflecting hyperplane would, if orthogonal to no root, be fixed only
by the identity in %".]

14. Prove that each point of E is # -conjugate to a point in the closure of
the fundamental- Weyl chamber relative to a base A. {Enlarge the
partial order on E by defining p < Aiff A—p is a nonnegative R-linear
combination of simple roots. If u  E, choose o € % for which A=op is
maximal in this partial order.]

Notes

The exposition here is an expanded version of that in Serre [2].

11. Classification

In this section O denotes a root system of rank £, W i1s Weyl group, A a
base of ..

I1L.1. Cartan matrix of ®

Fix an ordering (e, ..., «,) of the simple roots. The matrix ({=;, «;>)
is then called the Cartan matrix of ®. Its entries are called Cartan integers.
Examples: For the systems of rank 2, the matrices are:

20V 2 -1\ 2 =2 2 -1
mon (§3) 4 (LT ) s (L TR e (4 )
The matrix of course depends on the chosen ordering, but this is not very
serious. The important point is that the Cartan matrix is independent of the
choice of A, thanks to the fact (Theorem 10.3(b)) that ¥~ acts transitively on

the collection of bases, The Cartan maltrix is nonsingular, as in (8.5), since
A is a basis of E. It turns out to characterize ® completely.

Proposmon Let @ < E' be another roor system, with base A’ =
{af, oL b I a0y = (o, a0 for 1 < < ¢, then the bijection a;— o
extends (umque!y) to an momorph:sm é: E — E mapping ® onto 9’ and
satisfying {$(«), B> = {a, B> for all a, 8 € D. Therefore, the Cartan mafrix
of © determines © up to isomorphism.

Proof. Since A (resp. A') is a basis of E (resp. E"), there is a unique vector
space isomorphism ¢: E — E’ sending «; to af (1 < i = &). If «, Be A, the
hypothesis insures that oy (#(B)) = o (B) = B'— (B, a> o« = ¢(B)—
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(B, a> dla) = HB—<B, ey «) = o (B). In other words, the following

diagram commutes for each « e A:

The respective Weyl groups %7, %' are generated by simple reflections
(Theorem 10.3(d)), so it follows that the map gt gooo 1t is an isomor-
phism of %~ onto %, sending o, t0 o4, (o € A). But each § € @ is conjugate
under #" to a simple root (Theorem 10.3(c)), say 8 = ofx} (x & A). This in
turn forces ¢(8) = (¢ o oo ™) (¢(e) € @', It follows that ¢ maps @ onto O;
moreover, the formula for a reflection shows that ¢ preserves ali Cartan
integers. [

The proposition shows that it is possible in principle to recover @ from a
knowledge of the Cartan integers. In fact, it is not too hard to devise a
practical algorithm for writing down all roots (or just all positive roots).
Probably the best approach is to consider root strings (9.4). Start with the
roots of height one, i.e., the simple roots. For any pair o; # «;, the integer
r for the a-string through «; is O (i.e., &;—«; is not a root, thanks io Lemma
10.1), so the integer g equals — e, a;>. This enables us in particular to
write down all roots « of height 2, hence all integers {«, «;>. For each root «
of height 2, the integer r for the «;-string through o can be determined easily,
since «; can be subtracted at most once (why?), and then g is found, because
we know r—g = <a, «;». The corollary of Lemma 10.2A assures us that alt
positive roots are eventually obtained if we repeat this process enough times.

11.2. Coxeter graphs and Dynkin diagrams
If «, § are distinct positive roots, then we know that {«, 8> (B, ay =0,

1, 2, or 3 (9.4). Define the Coxeter graph of ® to be a graph having / vertices,
the ith joined to the jth (i # j) by {e;, o> {at;, ot;> edges. Examples:

Alx A ! o
A, 0D
B, S —
G, =)

The Coxeter graph determines the numbers {«;, «;> in case all roots
have equal length, since then {a;, o;> = {a;, «;>. In case more than one root
length occurs (e.g., B, or G,), the graph fails to tell us which of a pair of
vertices should correspond to a short simple root, which to a long (in case

“these vertices are joined by two or three edges). (It can, however, be proved

that the Coxeter graph determines the Weyl group completely, essentially
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because it determines the orders of products of generators of ¥, cf.

Exercise 9.3.)

Whenever a double or triple edge occurs in the Coxeter graph of @, we
can add an arrow pointing to the shorter of the two roots. This additional
information allows us to recover the Cartan integers; we call the resulting
figure the Dynkin diagram of ®. {As before, this depends on the numbering
of simple roots.) For example:-

Another example: Given the diagram o—————a——s—7o——o0 (Which

turns out to be associated with the root system F,), the reader can easily
recover the Cartan matrix

2-1 0 0
-1 2 -2 0
0 -1 2 -1
6 0-1 2

11.3. Irreducible components

Recall (10.4) that @ is irreducible if and only if @ (or, equivalently, A)
cannot be partitioned into two proper, orthogonal subsets. It is clear that @ is
irreducible if and only if its Coxeter graph is connected (in the usual sense).
In general, there will be a8 number of conpected components of the Coxeter
graph; let A = A, U...UA, be the corresponding partition of A into
mutually orthogonal subsets. If E; is the span of A, it-is clear that E = E, @
... ® E, (orthogonal direct sum}. Moreover, the Z-linear combinations of
A,; which are roots (call this set @,) obviously form a root system in E;, whose
Weyl group is the restriction to E; of the subgroup of %" generated by all
o, (x € A)). Finally, each E; is # -invariant (since « ¢ A, implies that o, acts
trivially on E)), so the (easy) argument required for Exercise 9.1 shows
immediately that each root lies in one of the E;, ie, ® =d; v ... D,

Proposition, O decomposes {(uniquely) as the union of irreducible root
systems O, (in subspaces E; of E) such that E = E; @ ... @ E, (orthogonal
direct sum). [

11.4. Classification theorem

The discussion in (11.3) shows that it is sufficient to classify the irreducible
root systems, or equivalently, the connected Dynkin diagrams (cf. Pro-
position 11.1).

Theorem. 7f © is an irreducible root system of rank £, its Dynkin dicgram
is one of the following (£ vertices in each case):
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A, (=1 o o o o0
1 2 3 £=1 ¢
B, ({22): o—0 * O— G50
1 2 ¢-2 £~1 ¢
C, (£= 3 oo e SN S5 e o
i 2 £-2 =1 ¢
D, (=4 o—0 o——a<l
1 2 £-3 ‘-2
‘
I
Es: o o
1 3 4 5 6

m
)
Q
2 O—0
b

1 3 5 6 7
Iz
Eg o0 O ———— 0
1 3 4 5 ] 7 B
F, o——ac—5— D —0
1 2 3 4
G, E====D
1 2

The restrictions on ¢ for types A,— D, are imposed in order to avoid
duplication. Relative to the indicated numbering of simple roots, the corres-
ponding Cartan matrices are given in Table 1. Inspection of the diagrams
listed above teveals that in all cases except B,, C,, the Dynkin diagram can
be deduced from the Coxeter graph. However, B, and C, both come from a
single Coxeter graph, and differ in the relative numbers of short and long
simple roots. (These root systems are actually dual to each other, cf. Exercise

5)

Proof of Theorem. The idea of the proof is to classify first the possible
Coxeter graphs (ignoring relative lengths of roots), then see what Dynkin
diagrams result. Therefore, we shall merely apply some elementary euclidean
geometry to finite sets of vectors whose pairwise angles are those prescribed
by the Coxeter. graph. Since we are ignoring lengths, it is easier to work for
the time being with sets of unit vectors, For maximum flexibility, we make
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Table 1. Cartan matrices

A;!

Bg:

Cye:

Deg:

Es:

E;:

Fs:

|
— 1

|
cCo@—OMn

SO —OMN

|

OO OO o oM

coooo-

—1

-1
-1

-1

-1
—1

—1

|

|

OO R—=OO3

¢
-1
0
-1 2 —1i
~1 2
0 -1
0 -1
0 T
0
0
0
—1
2
0 0
0 0
0 0
0 0
-1 0
2 —1
-1 2
0 i 0
0 0 0
0 0 0
0 0 0
-1 0 ¢
2 -1 0
-1 2 -1
0 -1 2
Gj: 2 -1
(3 72

[

-1

|
=N R

o OO

<O k2 = coo

MO = O

59
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only the following assumptions: E is a éuclidean space {of arbitrary dimen-
sion), M = {e, ..., &,} is a set of # linearly independent unit vectors which

satisfy (e;,¢;) < 0 (i # ) and 4(s;, £)* =0, 1, 2, or 3 (i # 7). Such a set of
vectors 18 called (for brevity) admissible, (Example: Elements of a base for a
root system, each divided by its length.) We attach a graph I' to the set W
just as we did above to the simple roots in a root system, with vertices i and j
(i # j)joined by 4(e;, ¢;)? edges. Now our task is to determine all the connected
graphs associated with admissible sets of vectors (these include all connected
Coxeter graphs). This we do in steps, the first of which is obvious. (T is not
assumed to be connected until later on.)

(1) If some of the &, are discarded, the remaining ones still form an admis-
sible set, whose graph is obtained from T' by omitting the corresponding
vertices and all incident edges.

(2) The number of pairs of vertices in ' connected by at least one edge is

sirictly less than n. Set & = Z g;. Since the &; are linearly independent, ¢ £ 0.
S0 0 < (s &) = n+2}:(s,, J) Let i, j be a pair of (distinct) indices for

which (s, ¢;) # 0 (i.e., Iet vertices i and j be joined). Then 4(z, £))* = 1, 2,
or 3, so in particular 2(5‘., g;) = —1. In view of the above inequality, the
number of such pairs cannot exceed #—1.

(3) T contains no cycles. A cycle would be the graph I of an admissible
subset A of W (cf. (1)), and then T would violate (2), w1th n replaced by
Card U".

(4) No more than three edges can originate ai a given vertex of I'. Say
ee U, and =7y, ..., are the vectors in U connected to & (by 1, 2, or 3
edges each), i.e., (s, 7;) < O with &, 5,, . . ., m, all distinct. In view of (3), no
two #’s can be connected, so (7, 1,) = 0 for 7 # j. Because U is linearly
independent, some unit vector %, in the span of &, 9, ..., 5, is orthogonal

k

to my, ..., clearly (e, 5o) # 0 for such ny. Now & = Z(e MM, 80

1= (e &) = Z(e 7%, This forcesz (s, m)* < 1, or Z 4, n;)? < 4. But

4(e, 7)* 1s the number of edges j Jommg s toxn; in I\

(5) The only connected graph U of an admissible set W which can
contain a triple edge is c=—=== (the Coxeter graph G,). This follows at
once from (4). ‘

(&) Let {1, ..., &} < W have subgraph o—o ----- o——o (a simple

chainin U 3f W = (U—{e, ..., U {e}, e = E g;, then W' is admissible.

(The graph of U’ is obtained from T by shrmkmg the simple chain to a

point.) Linear independence of 2’ is obvious. By hypothesis, 2(¢;, &,,,) =

—1(l=i<k-1),50 (e = k+22(sl, e) =k—(k—1)=1. 80 ¢is a
{<j

unit vector. Any ne W—{e,,..., ¢} can be connected to at most one of

e,-. ., by (3),50 (o, ) =0o0relse (3, e}y = (g, &) for | < i<k In
either case, 4(z, &)2 = 0, 1, 2, or 3.
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(T) T contains no subgraph of the farm:

g pe—————0 ' O a D

Suppose one of these graphs occurred in I'; by (1} it would be the graph of
an admissible set. But (6) allows us to replace the simple chain in each_ case
by a single vertex, yielding (respectively) the following graphs which violate

(4):

el

(8Y Any connected graph T' of an admissible set has one of the Jollowing
Jorms: .

O— o o+ 0 5

c———q T — D ————0 o————0

£y £y £3 Ep Mg T~ " K
s

M

Indeed, only c======0 contains a triple edge, by (5}. A connected graph
containing more than one double edge would contain a subgraph

—— o v O ——— T D
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which (7) forbids, so at most one double edge occurs. Moreover, if T has a
double edge, it cannot also have a “node” (branch point)

]

(again by (7)), so the second graph pictured is the only possibility {cycles
being forbidden by (3)). Finally, let I have only single edges; if T" has no
node, it must be a simple chain (again because no cycles are allowed). 1t
cannot contain more than one node (7), so the fourth graph is the only
remaining possibiiity.

(9) The only connected " of the second type in (8) is the Coxeter graph F,
O ———0 or the Coxeter graph B (=C)o————0 - --
LS e aae ¥ EERAS— I

P
Set & = Zf&,-, y = 2”7: By hypothesis, 2(s;, £,.1) = —1 = 2{n;, 7:4,), and

i=1

other pairs are orthogonal, so (¢, &) = Z.c —pz Hi+1) = plp+1)/2, (n, %)

J=
= q(q+1)/2 Since 4(e,, 7,)* = 2, we also have (s, m)? = pPq*(e,, 7)) =
242/2. The Schwartz inequality implies (since e, n are obviously independent)
that (e:m)* < (2, ¢) (m, ), or p*4%/2 < p(p+1)q(g+1)/4, whence (p—1) (g 1)
< 2. The possibilities are: p = g = 2 (whence F,) or p = 1 (g arbitrary),
g == 1 (p arbitrary).
(10) The only connected T of the fourth type in (8) is the Coxeter graph D,

om0 v o—o<_‘z or the Coxeter graph E, (n =6, 7 or 8)

o o— i o - o Set e=DXjy, p=Xiy [ =2, It is
clear that e, %, { are mutually orthogonal, linearly independent vectors,
and that + is not in their span. As in the proof of (4) we therefore obtain
cos? 8, +cos? 8, +cos? §, < 1, where 8;, 0;, 85 are the respective angles
between 4 and e, 3, {. The same calculation as in (9), with p— 1 in place of p,
shows that (e, &) = p(p—1)/2, and similarly for =, {. Therefore cos® g, =
(e, 90%/(e, &) () = (p—1)*(eprs 9 Me, o) = 3 Qp—Dp(p—1)) =
(p—D/2p = 3 (1 —1/p). Similarly for @,, 8,. Adding, we get the inequality
WI-Tp+1-Yg+1—=1/r) < 1, or (¥} ljp+1/g+1jr > 1. {This inequality,
by the way, has a long mathematical history,) By changing labels we may
assume that I/p < l/g < 1jr (<1/2; if p, g, or r equals 1, we are back in
type A,). In particular, the inequality (*) implies 3/2 > r>1,50r=2.
Then l/p+1/q > 1/2, 2/g > 1/2, and 2 < g < 4. If g = 3, then 1/p > 1/6
and necessarily p < 6. So the possible triples (p, ¢, r) turn out to be: {(p,2,2)
=D 3 2) = E: (4, 3, 2) =k (5 3,2) =

The preceding argument shows that the connected graphs of admissible
sets of vectors in euclidean space are all to be found among the Coxeter
graphs of types A-G. In particular, the Coxeter graph of a root system must
be of one of these types. But in all cases except B,, C,, the Coxeter graph
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uniquely determines the Dynkin diagram, as remarked at the outset. So the
theorem follows. []

Exercises

1. Verify the Cartan matrices (Table 1).
2. Calculate the determinants of the Cartan matrices (using induction on
£ for types A,~D,), which are as follows:

A f+1;B,:2;C,:2,D,:4:E:3;E;:2; Ey, Fpand Gyt 1.

3. Use the algorithm of {11.1) to write down all roots for G,. Do the same

N 2 -1 0
forCy: =1 Z —1}.
0 -2 2

4. Prove that the Weyl group of a root system @ is isomorphic to the direct
product of the respective Weyl groups of its irreducible components.

5. Prove that each irreducible root system is isomorphic to its dual, except
that B,, C, are dual to each other.

6. Prove that an inclusion of one Dynkin diagram in another (e.g., E; in E,
or E; in E) induces an inclusion of the corresponding root systems.

Notes

Our proof of the classification theorem~fellows Jacobson [I1]. For a
somewhat different approach, see Carter [1]. Bourbaki [2] emphasizes the
classification of Coxeter groups, of which the Weyl groups of root systems
are important examples.

12. Construction of root systems and automorphisms

In §11 the possible (connected) Dynkin diagrams of (irreducible) root
systems were all determined. It remains to be shown that each diagram of
type A-G does in fact belong to a root system ©. Afterwards we shall briefly
discuss Aut ®. The existence of root systems of type A,— D, could actually
be shown by verifying for each classical linear Lie algebra (1.2) that jts
root system is of the indicated type, which of course requires that we first
prove the semisimplicity of these algebras (cf. §19). But it is easy enough
to give a direct construction of the root system, which moreover makes plain
the structure of its Weyl group.

12.1. Construction of types A-G

We shall work in various spaces R”, where the inner product is the usual
one and where &, . .., &, denote the usual orthonormal unit vectars which
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form a basis of R". The Z-span of this basis is (by definition) a lattice,
denoted /. In each case we shall take E to be R" (or a suitable subspace
thereof, with the inherited inner product). Then ¢ will be defined to be the
set of all vectors in [ (or a closely related subgroup J of E) having
specified length or lengths.

Since the group 7 (or J) is discrete in the usual topology of R", while
the set of vectors in R” having one or two given lengths is compact (closed
and bounded), ® is then obviously finite, and will exclude O by definition.
In each case it will be evident that ® spans E (indeed, a base of § will be
exhibited explicitly). Therefore (R1) is satisfied. The choice of lengths will
alse make 1t obvious that (R2) holds. For (R3) it 1s enough to check that
the reflection g, (xe @) maps ¢ back inte J, since then o, (@) automati-
cally consists of vectors of the required lengths. But then (R3) follows
from (R4). As to (R4), it usually suffices to choose squared lengths
dividing 2, since it is automatic that all inner products (o, 8} e Z (a, 8 € [).

Having made these preliminary remarks, we now treat the separate
cases A—G. After verifying (R1) to (R4) in the way just sketched, the
reader should observe that the resulting Cartan matrix matches that in
Table | (11.4).

A, (£=1): Let E be the #dimensional subspace of R‘*! orthogonal
to the vector &, +...+¢&,,.,. Let I" = N E, and take @ to be the set of all
vectors « & I' for which («, @) = 2. Tt is obvious that ® = {s,—&,, { # j}. The
vectors o; = g;—e;y (1 < < ) are independent, and e, —e; = (g;—e;4 )
(g1 —t22)+ . oo Fle;,o1—g;) if § < j, which shows that they form a
base of @. It is clear that the Cartan matrix A, results. Finally, notice that
the reflection with respect to «; permutes the subscripts 7, i+ 1 and leaves
all other subscripts fixed. Thus o,, corresponds to the transposition (7, +1)
in the symmetric group &, ; these transpositions generate &, ., s0 we
obtain a natural isomorphism of #” onto %, ..

B, ({2 2): Let E=R’ ® = {aell(x,a) =1 or2}. It is easy to check
that @ consists of the vectors +e; (of squared length 1) and the vectors
+(e;+¢)), i # j(of squared length 2). The £ vectors e; —e,, ey~ €3, ..., €71
—e&,, ¢, are independent; a short root e; = (e;—e;)-F(er —ee2)+. ..
+{e; ., — ;) +e,, while a long root e;—¢; or e;+ ¢ is similarly expressiole. The
Cartan matrix for this (ordered) base is clearly B,. ¥ acts as the group of

all permutations and sign changes of the set {¢,, ..., &7}, 50 ¥ is isomorphic
to the semidirect product of (Z/2Z)° and &, (the latter acting on the
former). ‘

C,(£=3) C, ({ = 2) may be viewed most conveniently as the root
system dual to B, (with B, = C;), cf. Exercise 11.5. The reader can verify
directly that in E = R, the set of all +2¢; and all (e, +¢;), | # j, forms a
root system of type C,, with base (¢, —¢5,...,6,-;—5. 2¢,}. Of course
the Weyl group is isomorphic to that of B,.

D,(£{=>4): Let E=R", ® = {x e I|(, ) =2} = {£(e;ke), /5 ).
For a base take the £ independent vectors e, —e;, ..., &) —8, &5,
(so D, results), The Weyl group is the group of permutations and sign changes
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involving only even numbers of signs of the set {e;, ..., e} So ¥ is iso-
morphic to the semidirect product of (Z/2Z) ™" and &,

E,, E;. Eg: We know that E¢, E; can be identified canonically with sub-
systems of E4 (Exercise 11.6), so it suffices to construct Eg. This is slightly
complicated. Take E = R®, 7" = T+ Z{(e, +. . .-+ 2)/2), {" = subgroup of [’

¢ . .
consisting of all elements X8+ E(sl—!— ... +eg) for which Z¢; 1s an even

integer. (Check that this is a subgroup!} Define @ = {« e (e, &) = 2} Tt

is easy to see that @ consists of the obvious vectors + (e;+ ¢).i # j,along with
) 8

the less obvious ones + ¥ (— 1)*"; (where the k(i) == 0, 1, add up to an even

i=1
integer). By inspection, all inner products here are in Z (this has to be

checked, because we are working in a larger lattice than 7). As a base we take
{Iei+eg—(eat. . Feg)h ey+6a, €28, 838 E4TE3 &5 TEq Eg s
e, —5, ). (This has been ordered so as to correspond to the Cartan matrix
for E4 in Table | (11.4).) The reader is invited to contemplate for himself
the action of the Weyl group, whose order can be shown to be 2143%5%7,

FoiLetE = RY 1" = [+ Z((e;+e,+e3+6,)/2), @ = {ee['|(e, ) = L o1
2). Then @ consists of all e, all £(e; ), 7 #, as well as all - 3(e, t e,
+ eyt e,), where the signs may be chosen independently. By inspection, all
numbers {a, ) are integral. As a base take {e;—€5,85— 4,84 (e — &£y
—¢,)}. Here #” has order 1152.

G,: We already constructed G, explicitly in §9. Abstractly, we can take
E to be the subspace of R® orthogonal to e +e;4e;, [ =71NE & =
{me (e, ) =2 or 6}. S0 O = +{e, —ey, e3—e3, & —Ey, 28 -E3—¢,
2, — €, —6q, 2e3—&, —5; ). AS a base c@se £, —&y, —2e,+e;+ey, (How
does #" act?

Theorem. For each Dynkin diagram (or Cartan matrix) of type A-G,
there exists an irreducible root system having the given diagram. [

12.2. Automorphisms of ®

We are going o give a complete description of Aut @, for each root
system ®. Recall that Lemma 9.2 implies that #” is a normal subgroup of
Aut @ (Exercise 9.6). Let [' = {v e Aut ®|o(A) = A}, A a fixed base of D.
Evidently, T is a subgroup of Aut ®. If re ' %", then - = 1 by virtue
of the simple transitivity of #" (Theorem 10.3(e)). Moreover, if »eAut @
is arbitrary, then +(A) is evidently another base of @, so there exists o e ¥~
such that or(A) = A (Theorem 10.3(b)}, whence = I'#". 1t follows that
Aut © is the semidirect product of T and W,

For all e Aut @, all «, 8 ®, we have (&, B> = (7(«), 7{B)>. Therefore,
each r e I" determines an automorphism (in the obvious sense) of the Dynkin
diagram of @. If = acts trivially on the diagram, then » = 1 (because & spans
E). On the other hand, each automorphism of the Dynkin diagram obviously
determines an automorphism of @ (cf. Proposition 11.1). So I' may be
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Tahle 1..
Number of
Type Positive Roots Order of %~ Structure of #° r
A £+ P ' & )
¢ 2 (£+1)! 4t ZRE (6= 2)
By Cy a 2441 (Z2Z)¢ > 5 1
- Ky (=4
2_ £-1 71 -1 3
B re e @20 >4 e zpg s 4
Es 36 27315 Z12Z
E, 63 210 34 57 1
Eg 120 214 35 827 1
F. 24 27 32 1
Gs 6 23 @ 1

identified with the group of diagram automorphisms. A glance at the list in
(11.4) yields a description of I', summarized in Table 1 along with other
useful data, for @ irreducible. (Since diagram automorphisms other than the
identity exist only in cases of single root length, when the Dynkin diagram
and Coxeter graph coincide, the term graph automorphism may also be used.)

Exercises

1. Verify the details of the constructions in {12.1).

2. Verify Table 2.

3. Let ® < E satisfy (R1), (R3), (R4), but not (R2), cf. Exercise 9.9. Suppose
moreover that @ is irreducible, in the sense of §11. Prove that @ is the
union of root systems of type B,, C, in E (if dim E = n >> 1), where the long
roots of B, are also the short roots of C,. (This is called the rnon-reduced
roof system of type BC, in the literature.}

Table 2. Highest long and short roots

Type Long Short

Ay T S ST

B, oy + 2005+ 205 4. . A 2ag oozt Far

Cy T P R, PP wy+2as+. A das g Fay
D, oa;+2a1+...+2m'(_z+m(_1+a,

E, wy+ 20+ 205+ 3ag+ 205+ 2

E, 20y + 2+ 3oy +dos+ 3o+ 2o+ ay

Eg 2oty + 3o+ doty + 60yt Ses + dag+ Joeg 4+ 2ag

Fa 2oty + 3oy + oy + 2oy ooy + 2oy + 3oy 2oy

G, oty + 20z 2oy + o5
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4, Prove that the long roots in G, form a root system in E of type A;.

5. In constructing C,, would it be correct to characterize P as the set of all
vectors in 7 of squared length 2 or 47 Explain.

6. Prove that the map «+— —a is an automorphism of ®. Try to decide for
which irreducible ® this belongs to the Weyl group.

7. Describe Aut @ when & is not irreducible.

Notes

The treatment here follows Serre [2]. More information about the
individual root systems may be found jn Bourbaki [2].

~

13, Abstract theory of weights

In this section we describe that part of the representation theory of
semisimple Lie algebras which depends only on the root system. (None of
this is needed untit Chapter VI.) Let @ be a root system in a euclidean space
E, with Weyl group #".

13.1. Weights

Let A be the set of all AeE for which (A, ad e Z (xe®), and call its

. . 2(, a) pj : :
elements weights. Since (A, «> = (w_) depends linearly on A, A is a sub-
o, o

group of E including ®. Thanks to Exercise 10.1, A € A iff (A, &) € Z for all
a € A. Denote by A, the root lattice (=subgroup of A generated by ®). A,
is a lattice in E in the technical sense; it is the Z-span of an R-basis of E
{namely, any set of simple roots). Fix a base A © ®, and define Ae A to be
dominant if all the integers {A,a>(« € A) are nonnégative, strongly domi-
nant if these integers are positive. Let A™ be the set of all dominant
weights. In the Janguage of (10.1), A™ is the set of all weights lying in the
closure of the fundamental Weyl chamber € (A), while A §(A) is the set of
strongly dominant weights.

A ={«,...,a]}, then the vectors 2e,/{e;, &) again form a basis of E,
Let A, ...,A, be the dual basis (relative to the inner product on Ej:
A 2)

( ) 8;;. Since all {A;, a> (x € A) are nonnegative integers, the 4; are
o, 0 .

doJmir‘;ant weights. We call them the fundamental dominant weights (relative
to A). Notice that oyd; = 4,—d;a; where 6, =g0,. If 1€k is arbitrary,
let m; = <A, a;). Then 0 = (A—Zm;, «) for each simple root «, which
implies that (A—~Zn1;A,, &) = 0 as well, or that A = Zm A, Therefore, A isa
lattice with basis (A, 1 < i < &), and Ae A* if and only if alf m; = 0. (Cf.
Figure 1, for type A,.)
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o]

Figure 1

Tt is an elementary fact about lattices that AfA, must be a finite group
(called the fundamental group of ®). We can see this directly as follows.
Write a; = Y m1;;A; (my; € ). Then (e, o> = 3. my; <Ay, &> = my,. In other

J 4

words, the Cartan matrix expresses the change of basis. To write the A; in
terms of the «;, we have only to invert the Cartan matrix; its determinant
(cf. Exercise 11.2) is the sole denominator involved, so this measures the
index of A, in A. For example, in type A, «; = 2A,. (This is the only case
in which a simple root is dominant, for reasons which will later become
_% _é) , 50 ap = 2A,—A,
% ;), so that A, = (1/3)
(200, +5) and A, = (1/3) (o, +2«,). By computing determinants of Cartan
matrices one verifies the following list of orders for the fundamental groups
AJA, in the irreducible cases:

Ad’ {’p"!"l; Bb CJ, E'IJ 2; D{’ 4: EG: 33 ES! F4= GZ: L

apparent.) In type A;, the Carfan matrix is (

and «, = —A;+24,. Inverting, we get (]/3)(

With somewhat more labor one can calculate explicitly the A; in terms of
the a;. This information is listed in Table 1, for the reader’s convenience,
although strictly speaking we shall not need it in what follows. The exact
structure of the fundamental group can be found by computing elementary
divisors, or can be deduced from Table 1 once the latter is known (Exercise 4).

13.2. Dominant weights

The Weyl group #~ of @ preserves the inner product on E, hence lcaves
A invariant, (In fact, we already made the more precise observation that
od; = A;—8,;=,.) Orbits of weights under %" occur frequently in the study of
representations. In view of Lemma 10.3B and Exercise 10.14, we can state:

Lemma A. Each weight is conjugate under W~ to one and only one dominant
weight. If X is dominant, then oA < A for all e € %", and if A is strongly dominant,
then oh = A only when o = 1. [}
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As a subset of E, A is partially ordered by the relation: A >> u if and
only if A—u is a sum of positive roots {10.1). Unfortunately, this ordering
does not have too close a connection with the property of being deminant;
for example, it is easy to have w dominant, p < A, but A not dominant
(Exercise 2). Our next lemma shows, however, that dominant weights are
not foo badly behaved refative to <.

Table 1.

Ap A= .4% [(F=i+ Do+ 2 =it Vgt . A G=13 (= Doy
+ A= i Ve + i — Dy A+ LTy
Byt A= oy 2asb = Doty b Koy o+ 0oy (i< /)
Ar = Heap+2ap 4.0 4 fa)
Crt A= oy +2a+. . = Doy + o+ o + 3oy}
Di M=o 420+ FH{i=Day + e+ e o)+ e +ay) (<=1}
D {C T S SR () TP e S R AL
A = Moy +2ay+. A (= Do 2+ 3~ a1+ 172p)
(Yg ;> is abbreviated (g, ... g,) in the following lists,)
Es: A, = 1{(4,3,5,6,4,2)
A= (1,2,2,3,2, 13
Ay = (5, 6,10, 12, 8, 4)
Ay= (2,3,4,6,4,2)
As = 44, 6, 8, 12, 10, 5)
Ag = 1(2,3,4,6,5 4 ;
E,: Ar= (2,2,3,4,3,2,1) /

&

Ay =H4,7,8,12,9,6,3)
Ay= (3,4,6,8,6,4 2)
Aa= {4,6,8,12,9,6,3)
As = (6,9, 12, 18, 15,10, 5)
Ag = (2,3,4,6,54,2)
Ay =14(2,3,4,6,54, D
Eg: Ay = (4,5 7,10,8,6,4,2)
Ay = (5,8,10,15 12,9, 6, 3)
Ay = {7, 10, 14, 20, 16, 12, 8, 4)

Ag = (10, 15, 20, 30, 24, 18, 12, 6)
As = (8, 12,-16, 24, 20, 15, 10, 5)
Ag = (6,9,12, 18, 15,12, 8, 4}
Ay = (4,6,8,12,10,8,6,3)
Ag= (2,3,4,6 54,3, 2)

Foir A= (2,3,4,2)
Ay= (3,6,8,4)
Ay = (2,4,6,3)
Ay = (1,2,32)

Gar Ay = (2,1
A= (3,2)
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LemmaB. Let Ae A", Then the number of dominant weights . < X is finite.

Proof. Since A+pueA™ and A—p is a sum of,positive roots, 0 < (A+p,
A—p) = (4, A} — (). Thus x lies in the compact set {xeE|(x,x) < (4, 4)},
whose Intersection with the discrefe set A™* is finite. [

13.3. The weight 8

Recall (Corollary to Lemma 10.2B) that 8 = 1 } «, and that 0,8 = §—«;
ax0
(1 =i = ¢). Of course, 3 may or may not lie in the root lattice A, (cf. type

A.}; but § does lie in A. More precisely:
[
Lemma A. § = ) A, so 8 is a (strongly) dominant weight.
i=t

Proof. Since g0 =0—a,=06—{6,0 0, {(fou>=1 (1<i<{). But
8 =73 (8,4 (cf. (13.1)), so the lemma follows. ]

The next lemma is merely an auxiliary result, needed in (13.4).

Lemma B. Let pe A", v =07y (cc #"). Then (v+38, v+8) < (u+3,
w8), with equality only if v=y.

Proof. (p48,p+8)=(a(v+8)Yo(r +EN=(p+ad,p+od)=(p+8p+
8y—2( . 8—08). Since pe A", and §—08 is a sum of positive roots
(13.2A, 13.3A), the right side is < (u+8,u+8), with equality only if
(g, 8—08)=0, ie, {1, 8)=(p,08)=(v,8), or (L—r,8}=0. But p—#'is a
sum of positive roots (13.2A} and & is strongly dominant, so p=v». [

13.4. Saturated sets of weights

Certain finite sets of weights, stable under %", play a prominent role in
representation theory. We call a subset II of A saturated if for all Ae I,
e P, and [ between 0 and (A, «), the weight A —j also lies in IT. Notice first
that any saturated set is automatically stable under %, since o, A = A
{A, &> o and ¥ is generated by reflections. We say that a saturated set II
has highest weight A (Ae A*) if Ae Il and w ~< A for all u e IT. Examples:
(1) The set consisting of 0 alone is saturated, with highest weight 0. (2) The
set @ of all roots of a semisimple Lie algebra, along with 0, is saturated, In
case P is irreducible, there is a unique highest root (relative to a fixed base
A of @) (Lemma 10.4A), so II has this root as its highest weight (why?).

Lemma A. A saturated set of weights having highest weight X must be
finite.
Proof. Use Lemma 13.2B. [I

Lemma B. Let 11 be saturated, with highest weight A, If pe AY and p < ),
then p e T,

Proof. Suppose 1’ = pu + Y kaell (ke Z™). (Important: We do not

aEA
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assume that ¢’ is dominant.) We shall show how to reduce one of the &,
by one while still remaining in IT, thus eventually arriving at the conclusion
that u e II. Of course, our starting point is the fact that A itself is such a
p'. Now suppose u' # p, 80 some k, is positive. From (3 k,a, ¥ k) > 0,

we deduce that (3, k2, B) > 0 for some B e A, with k; > 0. In particular,
&
{3 k., B> is positive. Since p is dominant, {u, 8> is nonnegative. There-
-4

fore, (u', 8 is positive. By definition of saturated set, it is now possible to
subtract g once from " without leaving TI, thus reducing k; by one.

From Lemma B emerges a very clear picture of a saturated set IT having
highest weight A: IT consists of all dominant weights lower than or equal to A
in the partial ordering, along with their conjugates under %", In particular,
for given A e A¥, at most one such set IT can exist, Conversely, given A e A™,
we may simply define IT to be the set consisting of all dominant weights
below A, along with their # -conjugates. Since II is stable under #7, it
can be seen to be saturated (Exercise 10), and thanks to Lemma 13.2A, IT has
A as highest weight.

To conclude this section, we prove an inequality which is essential to
the application of Freudenthal’s formula (§22).

Lemma C. Let I1 be saiurated, with highest weight A. If pell, then
(p+8,u+8)< (A+8,A+8), with equality only if p=A,

Proof. In view of Lemma 13.3B, it is enough to prove this when p is
dominant. Write p=A— o, where = is a sum of p@iftive roots. Then (A48,
A+8)—(p+8 p+8)=A+8, A+ —-(K+8—7, A+8—n)=
A+8,my+(mp+8)= (A+8,7)2 0, the inequalities holding because p+§
and A+ 8 are dominant. Equality holds only if #=0, since A+ § is strongly
dominant, )

Exercises

I. Let ® = @, U ... Ud, be the decomposition of @ into its irreducible
components, with A = A; v ... A, Prove that A decomposes into a
direct sum A, @ ... @® A,; what about A"?

2. Show by example {(e.g., for A,) that A ¢ A", a e A, A—a e A" is possible.

3. Verify some of the data in Table 1, e.g., for F,.

4. Using Table 1, show that the fundamental group of A, is cyclic of order
£+ 1, while that of D, is isomorphic to Z/4Z (¢ odd), or Z/2Zx Z/2Z
(£ even). (Tt is easy t0 remember which is which, since A; = D;.)

5. If A’ is any subgroup of A which includes A,, prove that A’ is % -
invariant. Therefore, we obtain g8 homomorphism ¢é: Aut O/% — Aut
{A/A,). Prove that ¢ is injective, then deduce that —1 e #" if and only
if A, 2 2A (cf. Exercise 12.6). Show that —1 =% for precisely the
irreducible root systems A, B,, C,, D, (£even), E5, Eq, Fy, G,
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6. Prove that the roots in @ which are dominant weights are precisely the
highest long root and (if two root lengths occur) the highest short root
(cf. (10.4) and Exercise 10.11), when @ is irreducible.

7. 1f ey, .. ., & is an obtuse basis of the euclidean space E (i.e., all (e, ) <
0 for i %J), prove that the dual basis is acute (i.e., all (eF ,sj‘) = 0 for
i # /). [Reduce to the case £ = 2]

8. Let @ be irreducible. Without using the data in Table 1, prove that each
X; is of the form ) g,;«;, where all g,; are positive rational numbers.

[Deduce from Exe;cise 7 that all ¢,; are nonnegative. From (A;, 4;) > 0
obtain ¢,; > 0. Then show thatif g;; > 0 and («;, &) < 0, then g > 0.

9. Let Ae A™. Prove that o(A+8)— & is dominant only for ¢ = 1.

10. IfAe A*, prove that the set IT consisting of all dominant weights jc <A
and their % -conjugates is saturated, as asserted in (13.4).

11. Prove that each subset of A is contained in a unigue smallest saturated
set, which is finite if the subset in question is finite.

12. For the root system of type A,, write down the effect of each element of
the Weyl group on each of A;, A,. Using this data, determine which
weights belong to the saturated set having highest weight Ac+3A;,. Do
the same for type G, and highest weight A, +24,.

13. Call » ¢ A* minimal if € A™, p < A implies that & = A, Show that each
coset of A, in A contains precisely one minimal A. Prove that A is minimal
if and only if the % -orbit of A is saturated (with highest weight A), if
and only if Ae A and (A, «» =0, 1, —1 for all Toots «. Determine
(using Table 1) the nonzero minimal A for each irreducible @, as follows:

A d, oA
B,: A,

C,i X

Do A, A, A
Egt AL Ag

E A

MNotes

Part of the material in this section is drawn from the text and exercises
of Bourbaki [2], Chapter VI, §1, No. 9-10 (and Exercise 23). But we have
gone somewhat beyond what is usually done outside representation theory
in order to emphasize the role played by the root system.

Chapter 1V

Isomorphism and Conjugacy Theorems

14. Isomorphism theorem

We return now to the situation of Chapter I1: L is a semisimple Lie
algebra over the algebraically closed field F of characteristic 0, H is a maximal
toral subalgebra of L, ® < H* the set of roots of L relative to H. In (8.5)
it was shown that the rational span of @ in H*is of dimension ¢ over Q,
where ¢ = dim; H*. By extending the base field from Q to R we therefore
obtain an £-dimensional real vector space E spanned by ®. Moreover, the
symmetric bilinear form dual to the Killing form is carried along to E,
making E a euclidean space. Then Theorem 8.5 affirms that @ is a root
system in E.

Qur aim in this section is to prove that two semisimple Lie algebras
having the same root system are isomorphic. Actually, we can prove a more
precise statement, which leads to the construction of certain automorphisms

as well.
v

14.1. Reduction to the simple case

Proposition. Let L be a simple Lie algebra, H and @ as above. Then © is an
irreducible root system in the sense of (10.4).

Proof. Suppose not. Then ® decomposes as @, U @,, where the ; are
orthogonal. If ae®;, Be®,, then (a+fh, o) # 0, (a+f, B) # 0, 50 a+§
cannot be a root, and [L,L,] = 0. This shows that the subalgebra K of L
generated by all L, (x e ®,) is centralized by all L; (8 =®,); in particular,
K is a proper subalgebra of L, because Z(L} = 0. Furthermore, K is normal-
ized by all L, (xe®,), hence by all L, («e®), heace by L (Proposition 8.4
(). Therefore K is a proper ideal of L, different from 0, contrary to the
simplicity of L. [ '

Next let L be an arbitrary semisimple Lie algebra. Then L can be written
uniquely as a direct sum L, @ ... @ L, of simple ideals (Theorem 5.2). If
H is a maximal toral subalgebra of L, then H = H, @ ... @® H,, where
H, = L, H {cf. Exercise 5.8). Evidently each #; is a toral algebra in L;,
in fact maximal toral: Any toral subalgebra of L, larger than H; would
automatically be toral in L, centralize all H,, j # i, and generate with them
a toral subalgebra of L larger than H. Let @, denote the root system of L;
relative to H,, in the real vector space E,. If 2 ¢ ®@;, we can just as well view «
as a linear function on H, by decreeing that «(H;) = 0 for j 5 i. Then « is
Alaarlv o rant of T orelativa to A with 7. < I... Converselv. if « € . then




