
Extra Credit I Math 116

Due Nov 20, 2012
Remember: No credit will be given without mathematical or logical justification.
This extra credit is worth one homework assignment.

Part 1: Cauchy and Cauchy-Schwarz
In the following problems, we will prove the Cauchy-Schwarz inequality from the Cauchy
inequality.

1) The original Cauchy inequality is as follows: If a, b ∈ R, then

ab ≤ 1

2
a2 +

1

2
b2. (1)

a) Prove the Cauchy inequality. (Hint: Start with the fact that (a− b)2 ≥ 0).

b) Prove that equality holds in (1) if and only if a = b.

2) Prove the weighted Cauchy inequality. That is, prove that if ε > 0 then

ab ≤ 1

2
εa2 +

1

2
ε−1b2 (2)

3) Let ~A = (a1, . . . , an) and ~B = (b1, . . . , bn) be vectors in Rn. As usual the dot product

is given by ~A · ~B =
∑n

i=1 aibi. Using (1), prove the Cauchy inequality for vectors:

~A · ~B ≤ 1

2
‖ ~A‖2 +

1

2
‖ ~B‖2. (3)

What is the condition for equality?

4) Prove the weighted Cauchy inequality for vectors: if ε > 0 then

~A · ~B ≤ 1

2
ε‖ ~A‖2 +

1

2
ε−1‖ ~B‖2. (4)

5) In this problem we will use the Cauchy inequality to prove the Cauchy-Schwarz in-
equality. Let ~v, ~w ∈ Rn be arbitrary non-zero vectors.

a) Set ~A = ‖~v‖−1~v and ~B = ‖~w‖−1 ~w. Prove that ~A and ~B are unit vectors.

b) Using only (3), prove that ~A · ~B ≤ 1.

c) Using part (b), prove the Cauchy-Schwarz inequality: ~v · ~w ≤ ‖~v‖‖~w‖ for any
~v, ~w ∈ Rn. What is the condition for equality?
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Part 2: Convexity and Young’s Inequality
In the following problems, we will use the convexity of the exponential function to prove
Young’s inequality.

Definition. A real-valued function f defined on [A,B] (or (A,B) or (A,B]) or [A,B)) is
called convex if, whenever A ≤ a < b ≤ B, the line segment between the points (a, f(a)) and
(b, f(b)) lies above or on the graph of f on [a, b].

6) If A ≤ a < b ≤ B show that the equation of the segment of the secant line between
(a, f(a)) and (b, f(b)) is

x(t) = (1− t) a + tb

y(t) = (1− t) f(a) + tf(b)
(5)

where t varies between 0 and 1. Show that a function f(x) defined on an interval [A,B]
is convex if and only if

f((1− t)a + tb) ≤ (1− t)f(a) + tf(b) (6)

whenever A ≤ a < b ≤ B, and t ∈ [0, 1].

7) Below are listed several functions along their domains of definition. Which are convex?
(No formal proofs—you can justify with a graph or some intuitive reasoning.)

a) f(x) = x on [−1, 1]

b) f(x) = sgn(x) on [−1, 1]

c) f(x) = |x| on [−1, 1]

d) f(x) = sin(x) on [0, π]

e) f(x) = sin(x) on [π, 2π]

f) f(x) = x2 on (−∞,∞)

g) f(x) = x3 − x on (−∞,∞)

h) f(x) = x3 − x on [−1,∞)

i) f(x) = x3 − x on [0,∞)

8) Assume f(x) has a second derivative everywhere on the interval (A,B). Prove that if
f ′′(x) ≥ 0 on (A,B) then f is convex on (A,B) (you do not have to prove the converse,
which, incidentally, is also true: if f ′′(x) exists and f is convex, then f ′′(x) ≥ 0).

9) Prove that the function f(x) = ex is convex.

10) Prove that, whenever t ∈ [0, 1], we have

e(1−t) a+ t b ≤ (1− t) ea + t eb (7)

11) Here we finally prove Young’s inequality, a generalization of Cauchy’s inequality. As-
sume p, q are any positive real numbers that satisfy

1

p
+

1

q
= 1. (8)

If a and b are also positive (but otherwise have no special relationship) then ln(a) and
ln(b) are well-defined real numbers. Prove the following:
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a) eln a+ ln b = ab

b) Using the convexity of the function f(x) = ex, prove that

e
1
p ·p·ln a+ 1

q ·q·ln b ≤ 1

p
ep ln a +

1

q
eq ln b (9)

c) Prove Young’s inequality, namely that whenever a, b, p, q > 0 and 1
p + 1

q = 1, then

ab ≤ 1

p
ap +

1

q
bq. (10)

d) Prove that Cauchy’s inequality is a special case of Young’s inequality.
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