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1 Introduction

The Cauchy inequality is the familiar expression
2ab < a* + b2 (1)
This can be proven very simply: noting that (a — b)? > 0, we have
0 < (a—0b)? = a* — 2ab — V? (2)

which, after rearranging terms, is precisely the Cauchy inequality. In this note, we prove
Young’s inequality, which is a version of the Cauchy inequality that lets the power of 2
be replaced by the power of p for any 1 < p < co. From Young’s inequality follow the
Minkowski inequality (the triangle inequality for the I[P-norms), and the Holder inequalities.



2  Young’s Inequality

When 1 < p < 0o and a,b > 0, Young’s inequality is the expression

-1 » 1
D=t 4~ (3)
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This seems strange and complicated. What good could it possibly be?

ab <

The first thing to note is Young’s inequality is a far-reaching generalization of Cauchy’s
inequality. In particular, if p = 2, then 1% ==l % and we have Cauchy’s inequality:
1

1
ab S 5@2 + §b2 (4)

Normally to use Young’s inequality one chooses a specific p, and a and b are free-floating
quantities. For instance, if p = 5, we get
4 1
ab < —a* + 2.
5 )

Before proving Young’s inequality, we require a certain fact about the exponential function.

Lemma 2.1 (The interpolation inequality for e”.) Ift¢ € [0,1], then
etat(=1b < yea 4 (1- t)eb. (5)
Proof. The equation of the secant line through the points (a,e?®) and (b, €®) on the graph of
e® is precisely
t = (ta+ (1—1t)b, te® + (1 —t)eb). (6)

Obviously the graph of this line intersects the graph of e® at precisely two points: (b, e®)
when ¢ = 0, and (a,e®) when ¢t = 1. To parametrize the graph of e* so that the z-value of
this parametrization and that of the parametrization of the secant line are the same, we use

t (m +(1— )b, em+<1—f>b). (7)

But because e” is concave up, any secant line lies above the graph in between the points of
intersection. This means precisely that the y-values of these two parametrized curves obey

elat (= < pea 4 (1—1t)ed, (8)

which was to be proved. O

Theorem 2.2 (Young’s Inequality) Assume a and b are real numbers, and p > 1. Then
p— 1 » 1
p

ab < ar-1 + = bP,
p



Proof. There are a number of conceptually different ways to prove this inequality. Our
method will use Lemma Writing

ab = eloga+logb (9)

p—1 p p—1 1
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P

from Lemma [2.1] we get

-1 -1 1
ab < b Exp < f . log a> + <1 — p) Exp <<1pl> log b) (11)
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3 Minkowski’s Inequality

Theorem 3.1 (Minkowski’s Inequality) If 1 < p < oo, then whenever X, Y € Vg we
have

X + Y, < 1X[p + Y]l (14)

Proof. To prove that || X + Y|, < || X, + |Y|lp, we will replace Y by tY, and use the
observation that

1
d
X+l - 1%l = [ GIX+ela (15)
Ly
IXI + Y] — 1X], = / S Xy + dYly) dr (16)
and then all we need to prove is that
DX +1v), < Laxn, + vy (7)
dt =t P P

which is actually simpler. Note that the right side of is just ||Y|,. Computing the left



side is slightly tougher:

d d [ v
%HX+7,‘Y||Z, = I (Zm - tyi|p> (18)
lfp
= <Z |z — tyz|p> Z\xz — tyi[P7t - sgn(x —tyi) -y (19)
= [X- tY”;l;w : Z i — tyalP - sgn(xi — ty) - yi- (20)

But of course sgn(z; — ty;) - yvi < |yi|, so we have

i”X—i—tYH < i Az — tys| p_1| | (21)
dt P 2\ Ix yil:

To proceed from here, we manipulate this expression so that eventually we can use Young’s
inequality to our advantage. We have

dt r= Z\jx—wl, a
= 117
(= tyil o2\l
= > =g IYIE : - (23)
; X —tY =
=R I¥ls
When p = 1 we get directly that
d o0
X +tYlh < > il (24)
i=1
= Y| (25)
d
= o (X +llYll) (26)
as desired. When 1 < p < co we apply Young’s inequality to get
d = (p—1 (= tul Ol )
— | X +tY < Y| — | ——= 27
G, < S (i) T s () ) e
i=1 1Yl
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Finally note that .7, |&; — ty; [P equals precisely || X —tY[|5 and 7%, |y;|? equals precisely

I Hg. Therefore

d p—l( ¥l ) 1( 1 )
— || X +tY < X =tY|IIP ) + = | —= - ||Y]]2 30
Al < P (e X ) (e V) (30
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= Yl (32)
Therefore, as desired, we have proved that
TIx ¥l < i, +v) (33)
dt P dt P pre
so the theorem follows from and . |
4 Holder’s inequality
Theorem 4.1 (Hoélder’s inequality) If X,Y € Vg, then
Doy < X[ e Y] (34)
i=1
Proof. By Young’s inequality we have
= IX 2, HYHp TSI 1Yl
e A 2 e O 71
< - (36)
; Pox)ry PV
p—1 1 i » 11 &
= P Ny 5 luil? (37)
p ||XHpZi i=1 ¥l =
-1 1
S (38)
p p
Thus we have shown that
1 > > Z; Yi
X0 2 (1Yl z; ; XNz 1Yl
< 1, (40)



so after multiplying both sides by || X||_= ||V, we get

|
p—1

oo
Yoz < X2 1Y,
=1

which was to be proved.
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