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1 Vector Spaces

1.1 Definitions

A set X is called a vector space if it has an addition operation, denoted x+ y for x, y ∈ X ,
that satisfies

• Closure: x+ y ∈ V when x, y ∈ X

• Commutativity: x+ y = y + x

• An origin: There is an element 0X ∈ X with x+ 0X = x whenever x ∈ X

• Additive inverses: If x ∈ X , there is some y ∈ X with x + y = 0 (this “y” is often
denoted −x)

and a constant multiplication operation, denoted λ · x (or just λx) for λ ∈ R and x ∈ X ,
that satisfies

• Clusure: if λ ∈ R and x ∈ X then λ · x ∈ X

• Distributivity: λ · (x+ y) = λ · x + λ · y when λ ∈ R and x, y ∈ X

• Associativity: λ · (ν · x) = (λν) · x when λ, ν ∈ R and x ∈ X

• Zeros: 0 · x = 0X whenever x ∈ X .

The basic examples of vector spaces are the Euclidean spaces Rk. This is the normal
subject of a typical linear algebra course. Even more interesting are the infinite dimensional
cases.

1.2 Examples

1.2.1 The vector space V of lists

The first example of an infinite dimensional vector space is the space V of lists of real
numbers. We define

V = { (x1, x2, x3, . . . ) | xi ∈ R for all i } . (1)
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Addition is defined pointwise: setting X = (x1, x2, . . . ) and Y = (y1, y2, . . . ), we define

X + Y = (x1 + y1, x2 + y2, . . . ) (2)

Constant multiplication is likewise defined pointwise: if λ ∈ R we define

λX = (λx1, λx2, . . . ) . (3)

It is simple exercise to verify the vector space axioms.

1.2.2 The vector space VF of lists that terminate

A second example is the space VF of sequences that eventually terminate in zeros. Specifi-
cally, we define

VF = {X ∈ V | X = (x1, x2, . . . ) where only finitely many of the xi are nonzero } . (4)

Clearly VF ⊂ V, but VF 6= V. To prove that VF is a vector space in its own right, we only
have to prove that the addition operation is closed; when that is proved, the other vector
space axioms hold because they hold in the larger space V. That is, if x, y ∈ VF , we have
to show that x+ y ∈ VF . But this is simple: assuming X,Y ∈ V, they can be expressed as

X = (x1, . . . , xk, 0, 0, . . . ) and Y = (y1, . . . , yl, 0, 0, . . . ) (5)

where, without loss of generality, we can assume that l ≥ k. Then

X + Y = (x1 + y1, . . . , xk + yk, yk+1, . . . , y + l, 0, 0, . . . ) ,

so that X + Y terminates in zeros as well.

2 Normed Vector Spaces

2.1 Definitions

Definition. If X is a vector space, a function ‖ · ‖ : X → R is called a norm on X provided
the following hold:

i) Positivity: ‖x‖ ≥ 0, with equality if and only if x = 0X

ii) Compatibility with constant multiplication: ‖λx‖ = |λ|‖x‖

iii) Triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖
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Definition. A pair (X , ‖ · ‖) is called a normed vector space if X is a vector space and
‖ · ‖ is a norm on X . �

Proposition 2.1 If (X , ‖ · ‖) is a normed vector space, then the function d : X ×X → R
defined by d(x, y) = ‖x− y‖ is a metric on X .

Proof. We have to prove that d is positive (except for d(x, x) which we have to prove is
zero), that d is symmetric, and that it obeys the triangle inequality. The positivity of d
follows directly from that of ‖ · ‖. Symmetry follows by

d(x, y) = ‖x− y‖ (6)

= ‖(−1)(y − x)‖ (7)

= | − 1| · ‖y − x‖ (8)

= ‖y − x‖ (9)

= d(y, x). (10)

Also, d(x, x) = ‖x−x‖ = 0. The triangle inequality for d follows from the triangle inequality
for ‖ · ‖. To see this, note

d(x, z) = ‖x − y‖ (11)

= ‖x − z + z − y‖ (12)

≤ ‖x − z‖ + ‖z − y‖ (13)

= d(x, y) + d(y, z). (14)

�

2.2 Examples

2.2.1 The sup-norm on VF

We can give VF the following norm. If X ∈ VF , we can write X = (x1, x2, . . . ) where all
but finitely many of the xi are zero. Define

‖X‖ = sup
i
{|xi|}. (15)

One has to verify the appropriate axioms to prove that ‖ · ‖ is a norm.
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2.2.2 The lp norms on VF

Given any p, we can define a functional ‖·‖p that takes VF into the reals. If X = (x1, x2, . . . ),
then we define

‖X‖p ,

( ∞∑
i=1

|xi|p
) 1

p

. (16)

Note that 0 ≤ ‖X‖p < ∞ for any p, for any X ∈ VF ; the fact that ‖X‖p < ∞ can be seen
by noting that the sum on the right is a finite sum.

We claim that the functional ‖ · ‖p is a norm as long as 1 ≤ p < ∞. This is called
the lp-norm on VF . One must verify the three axioms for norms; the only difficult axiom
to verify is the triangle inequality. The triangle inequality for the lp-norm is so important
that it is given a special name: the Minkowski inequality.

Theorem 2.2 (Minkowski’s Inequality) If 1 ≤ p < ∞, then whenever X,Y ∈ VF we
have

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p. (17)

Proof. The proof is a little off the beaten path, so it is in a suplimentary set of notes. �

3 Banach Spaces

3.1 Definitions

Recall that a norm on a vector space X determines a distance function, so that any normed
vector space is also a metric space. Therefore we have the ability to determine if a sequence
is a Cauchy sequence.

Proposition 3.1 If (X , ‖·‖) is a normed vector space, then a sequence of points {Xi}∞i=1 ⊂
X is a Cauchy sequence iff given any ε > 0, there is an N ∈ N so that i, j > N implies

‖Xi − Xj‖ < ε.

Proof. Simple exercise in verifying the definitions. �

A vector spaces will never have a “boundary” in the sense that there is some kind
of wall that cannot be moved past. Still, it is not always the case that Cauchy sequences
are convergent. It is therefore important to distinguish between those normed vector spaces
that are complete and those that are not complete. The former are known as Banach spaces.
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Definition. A normed vector space (X , ‖·‖) is called a Banach space if it is complete,
in the sense that whenever a sequence is Cauchy with respect to the norm ‖ · ‖, it is
convergent. �

3.2 Examples

3.2.1 A Cauchy sequence in (VF , ‖ · ‖sup) that is not convergent.

Let (VF , ‖·‖sup) be the vector space of sequences of real numbers that terminate in all zeros,
along with the sup-norm. Let Xi ∈ VF be the sequence

Xi =

(
1,

1

2
,

1

3
, . . . ,

1

i
, 0, . . .

)
(18)

meaning that the kth entry of Xi is 1
k when k ≤ i, and is 0 when k > i. To prove the

sequence {Xi}∞i=1 is Cauchy, choose any ε > 0, and then select some N > 1
ε . Then if

i, j > N , where without loss of generality we assume j > i, we have

‖Xi −Xj‖sup =

∥∥∥∥(0, . . . , 0, − 1

i+ 1
, . . . , −1

j
, 0, . . .

)∥∥∥∥
sup

(19)

=
1

i+ 1
<

1

N
< ε. (20)

Thus {Xi}∞i=1 is Cauchy.

To prove that {Xi} has no limit, assume the contrary: that there is some X ∈ VF with
X = limi→∞Xi. Write X = (x1, x2, . . . ). Since X ∈ VF , it eventually terminates in all
zeros. Therefore xk = 0 whenever k is large enough, so we can choose a specific k for which
xk = 0. However, whenever n > k, we have that the kth entry of Xn is 1

k . Therefore the
kth entry of Xn −X is also 1

k , so that

‖Xn − X‖sup ≥ 1

k
. (21)

This contradicts that eventually ‖Xn −X‖sup < ε.

3.2.2 A Cauchy sequence in (VF , ‖ · ‖2) that is not convergent.

Recall the l2 norm: if X = (x1, x2, . . . ) ∈ VF , then

‖X‖2 =

( ∞∑
i=1

|xi|2
) 1

2

. (22)

Again, the sum on the right converges because it is actually a finite sum (as the xi are
eventually all zero). Consider the sequence {Xi} from the previous example, where Xi =
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(1, 12 , . . . ,
1
i , 0, . . . ). To see that Xi is Cauchy with respect to the l2 norm, we again assume

that j > i and compute

‖Xi − Xj‖2 =

∥∥∥∥(0, . . . , 0,− 1

i+ 1
, . . . ,−1

j
, 0, . . .

)∥∥∥∥
2

(23)

=

(
j∑

k=i+1

1

k2

) 1
2

<

( ∞∑
k=i+1

1

k2

) 1
2

. (24)

Since the sum
∑∞
k=1

1
k2 is convergent, the tail

∑∞
k=i+1

1
k2 can be made as small as desired

by choosing i sufficiently large. Therefore {Xi} is Cauchy.

To see that {Xi} has no limit, we argue as in the previous example. If X ∈ VF
satisfies limXi = X, then after writing X = (x1, x2, . . . ) there must be some k with xk = 0.
However, that implies that for sufficiently large n we always have that the kth entry of
Xn −X is 1/k, so that

‖Xn − X‖2 = ‖(. . . , 1/k . . . )‖2 (25)

=

(
. . . +

1

k2
+ . . .

)2

≥ 1

k
. (26)

Therefore the l2-norm of Xn−X is always bigger that 1
k , contradicting the assumption that

X is the limit of the sequence {Xi}.

3.2.3 A sequence in VF that is Cauchy in the l2 norm but not the l1 norm.

We have shown that the sequence {Xi} from the previous two examples is Cauchy in both
the l2 and sup norms. To show that it is not Cauchy in the l1 norm, chose i, j ∈ N (where
again j > i) and consider ‖Xi −Xj‖1. We have

‖Xi − Xj‖1 =

∥∥∥∥(0, . . . , 0,− 1

i+ 1
, . . . ,−1

j
, 0, . . .

)∥∥∥∥
1

(27)

=

j∑
k=i+1

1

k
(28)

Since the series
∑∞
k=1

1
k is divergent, the tail

∑∞
k=i+1

1
k is also divergent, meaning

lim
j→∞

j∑
k=i+1

1

k
= +∞. (29)

Thus regardless of how large i is, we can choose some j larger still to make ‖Xi − Xj‖1
large. Thus {Xi} is not a Cauchy sequence.
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4 The lp and l∞ spaces

We have considered the spaces VF with the various lp norms and the sup-norm, and we
have seen that these spaces are not complete.

Recall the vector space V that consists of infinite lists of real numbers X = (x1, x2, . . . ),
where the list does not necessarily terminate in zeros. If we make no other restrictions, the
functionals ‖ · ‖p and ‖ · ‖sup cannot be considered norms on V because many elements
would have infinite lengths. For instance, if X = (x1, x2, . . . ) where xi = i, then of course
‖X‖sup =∞.

Definition. (The lp spaces for 1 ≤ p <∞.) Given 1 ≤ p <∞, we define lp ⊂ V to be the
normed vector space of elements X = (x1, x2, . . . ) ∈ V that are p-summable, meaning

∞∑
i=1

|xi|p < ∞. (30)

To make lp a normed vector space, we give it the lp-norm ‖ · ‖p, meaning

‖X‖p =

( ∞∑
i=1

|xi|p
) 1

p

. (31)

�

Definition. (The l∞ space.) We define the space l∞ to be the subspace of V of elements
X that are bounded in the sup-norm. That is, X ∈ l∞ iff X ∈ V and, after writing
X = (x1, x2, . . . ), we have

sup
i
|xi| < ∞. (32)

To make l∞ a normed space, we give it the sup-norm (which we now also call the l∞ norm).

Theorem 4.1 (Riesz-Fischer) For 1 ≤ p ≤ ∞, the space lp is a Banach space.

Proof. Again, the proof is a little more than we will need in the future. However, you might
try to prove it on your own; the argument needed is quite elementary. �
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