THE METROPOLIS-HASTINGS ALGORITHM

BENEDICT MORRISSEY

This is a brief note explaining the Metropolis—Hastings algorithm[3] 2] and giving a brief example. This
is a note for part of Math 312 Summer 2019 lecture 13. It is primarily based off the excellent exposition
in [1].

Aim 0.1. Given a vector p= (p1,...,pn)", satisfying 0 < p; < 1 for each i, 1 < i < n, and satisfying
S, =1, we want to create a Markov chain with the property that [ is its (only) steady state (equilibrium)
probability distribution.

Warning 0.2. We continue to use the convention that the transition matrix of a Markov chain is the
matriz T such that T;; (the entry in it" row and j*" column of T) is the probability of transitioning from

state j to state i in a given time ste]ﬂ. Some authors instead work with T .

1. METROPOLIS-HASTINGS ALGORITHM

The Metropolis Hastings Algorithm consists of the following two steps, and produces a Markov chain

as wanted in aim [0.1]

(1) Pick an arbitrary Markov chain on n states, with the property that
e For any pair of states ¢, and j, if we are in state ¢ there is a non-zero probability that we will
be in state j in some future time step.
(2) Let T' be the transition matrix for the Markov chain in the first step of this algorithm. We form

a new Markov chain by forming the new transition matrix:

. T!iDiy -p - .
T T, min{1, Tj’jpj} if i #j
ij

1—21#7’“ ifi=j
Note firstly that the entries in the columns of T" are all positive, and for each column the entries sum
to one. Hence we indeed have the transition matrix for a Markov chain.

Note that it is not a problem if Ti’j or p; is zero — as we will simply take 1 as the minimum.

Proposition 1.1. The vector p' is a steady state probability distribution for the Markov chain produced by
the Metropolis—Hastings Algorithm.

Proof. First note that Tj;p; = Tjip;.
Hence the i" entry of TP is

(Th) =Y Tijp;
j=1
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where the final line follows as the entries in each column of T" sum to one.
Hence ' is a steady state (equilibrium) distribution of the Markov chain produced by the Metropolis—
Hastings algorithm. O

1Assuming that we are in state j.
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2. EXAMPLE

3/4
Suppose we want a Markov chain with the steady state (equilibrium) probability distribution p'= 1? 4

We implement the Metropolis—Hastings algorithm as follows:

e We first pick the Markov chain with transition matrix

. (12 12
S \1/2 1/2

o We now have Tip = §min{1, 3} = 1/2. Hence Thr =1 - 4 = 1.
We have Ty = %min{l, %} = %. Hence T1; = 5/6.

The Markov chain we get hence has transition matrix

5/6 1/2
1/6 1/2

3
Solving for eigenvectors of T' corresponding to the eigenvalue 1, gives us s Nk Normalizing tells us

3/4
1/4

that is a steady state probability distribution for 7T
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